PyTorch实现更新部分网络,其他不更新

yipeiwu_com6年前Python基础

torch.Tensor.detach()的使用

detach()的官方说明如下:

Returns a new Tensor, detached from the current graph.
The result will never require gradient.

假设有模型A和模型B,我们需要将A的输出作为B的输入,但训练时我们只训练模型B. 那么可以这样做:

input_B = output_A.detach()

它可以使两个计算图的梯度传递断开,从而实现我们所需的功能。

以上这篇PyTorch实现更新部分网络,其他不更新就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于python进行抽样分布描述及实践详解

基于python进行抽样分布描述及实践详解

本次选取泰坦尼克号的数据,利用python进行抽样分布描述及实践。 备注:数据集的原始数据是泰坦尼克号的数据,本次截取了其中的一部分数据进行学习。Age:年龄,指登船者的年龄。Fare...

python time模块用法实例详解

本文详细讲述了python的内嵌time模块的用法。分享给大家供大家参考之用。具体分析如下:   一、简介 time模块提供各种操作时间的函数 说明:一般有两种表示时间的方式...

pytorch模型预测结果与ndarray互转方式

预测结果转为numpy: logits=model(feature) #如果模型是跑在GPU上 result=logits.data.cpu().numpy() / logi...

python条件变量之生产者与消费者操作实例分析

python条件变量之生产者与消费者操作实例分析

本文实例讲述了python条件变量之生产者与消费者操作。分享给大家供大家参考,具体如下: 互斥锁是最简单的线程同步机制,面对复杂线程同步问题,Python还提供了Condition对象。...

Python读取环境变量的方法和自定义类分享

使用os.environ来读取和修改环境变量: 复制代码 代码如下: import os print (os.environ["TEMP"]) mydir = "c:\\mydir" o...