python 实现在一张图中绘制一个小的子图方法

yipeiwu_com6年前Python基础

有时候为了直观展现图的信息,可以在大图中添加小子图的方式进行数据分析,如下图所示:

具体的代码如下:该图连接了数据库,当然重要的不是数据展示,而是添加子图的方法。

import matplotlib.pyplot as plt
import MySQLdb as mdb
import numpy as np
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset


def graph():
  # 连接数据库
  conn = mdb.connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='alibaba_trace', charset='utf8')

  # 如果使用事务引擎,可以设置自动提交事务,或者在每次操作完成后手动提交事务conn.commit()
  conn.autocommit(1) # conn.autocommit(True)

  # 使用cursor()方法获取操作游标
  cursor = conn.cursor()
  # 因该模块底层其实是调用CAPI的,所以,需要先得到当前指向数据库的指针。
  try:
    cursor.execute("select machineID, count(id) from batch_instance where machineID != 0 group by machineID")
    records = cursor.fetchall()
    list_records = list(records)

  except:
    import traceback
    traceback.print_exc()
    # 发生错误时回滚
    conn.rollback()
  finally:
    # 关闭游标连接
    cursor.close()
    # 关闭数据库连接
    conn.close()

  res = []
  res[:] = map(list, list_records)
  machineID = [x[0] for x in res]
  instance_num = [x[1] for x in res]
  print(max(instance_num))
  print(min(instance_num))


  fig = plt.figure()
  ax1 = fig.add_subplot(1, 1, 1)
  # # cdf
  # hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  # cdf = np.cumsum(hist / sum(hist))
  # ax1.plot(bin_edges[1:], cdf, color='red', ls='-')
  # ax1.set_xlabel("instance number per machine")
  # ax1.set_ylabel("portion of machine")
  # plt.savefig('../../imgs_mysql/cdf_of_machine_instance.png')

  # # 直方图
  ax1.hist(instance_num, normed=False, alpha=1.0, bins=100)
  ax1.set_xlabel('instance number per machine')
  ax1.set_ylabel('machine number')
  # cdf 要添加的子图
  axins = inset_axes(ax1, width=1.5, height=1.5, loc='upper left')
  # ax1 大图
  # width height分别为子图的宽和高
  # loc 为子图在大图ax1中的相对位置 相应的值有
  # upper left
  # lower left
  # lower right
  # right
  # center left
  # center right
  # lower center
  # upper center
  # center
  hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  cdf = np.cumsum(hist / sum(hist))
  axins.plot(bin_edges[1:], cdf, color='red', ls='-')
  axins.set_yticks([])
  # axins.set_xlabel("instance number per machine")
  # axins.set_ylabel("portion of machine")

  plt.savefig("../../imgs_mysql/hist_of_machine_instance")
  plt.show()

if __name__ == '__main__':
  graph()

以上这篇python 实现在一张图中绘制一个小的子图方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python字典的常用操作方法小结

Python字典是另一种可变容器模型(无序),且可存储任意类型对象,如字符串、数字、元组等其他容器模型。本文章主要介绍Python中字典(Dict)的详解操作方法,包含创建、访问、删除、...

Python实现将HTML转成PDF的方法分析

Python实现将HTML转成PDF的方法分析

本文实例讲述了Python实现将HTML转成PDF的方法。分享给大家供大家参考,具体如下: 主要使用的是wkhtmltopdf的Python封装——pdfkit 安装 1. Instal...

Django中针对基于类的视图添加csrf_exempt实例代码

在Django中对于基于函数的视图我们可以 @csrf_exempt 注解来标识一个视图可以被跨域访问。那么对于基于类的视图,我们应该怎么办呢? 简单来说可以有两种访问来解决 方法一 在...

Python检测一个对象是否为字符串类的方法

目的   测试一个对象是否是字符串 方法 Python的字符串的基类是basestring,包括了str和unicode类型。一般可以采用以下方法: 复制代码 代码如下: def isA...

python使用pandas实现数据分割实例代码

本文研究的主要是Python编程通过pandas将数据分割成时间跨度相等的数据块的相关内容,具体如下。 先上数据,有如下dataframe格式的数据,列名分别为date、ip,我需要统计...