python实现simhash算法实例

yipeiwu_com6年前Python基础

Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3。该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感;另一个是由于算法是以空间换时间,系统内存吃不消。

复制代码 代码如下:

#!/usr/bin/python
# coding=utf-8
class simhash:

    #构造函数
    def __init__(self, tokens='', hashbits=128):       
        self.hashbits = hashbits
        self.hash = self.simhash(tokens);

    #toString函数   
    def __str__(self):
        return str(self.hash)

    #生成simhash值   
    def simhash(self, tokens):
        v = [0] * self.hashbits
        for t in [self._string_hash(x) for x in tokens]: #t为token的普通hash值          
            for i in range(self.hashbits):
                bitmask = 1 << i
                if t & bitmask :
                    v[i] += 1 #查看当前bit位是否为1,是的话将该位+1
                else:
                    v[i] -= 1 #否则的话,该位-1
        fingerprint = 0
        for i in range(self.hashbits):
            if v[i] >= 0:
                fingerprint += 1 << i
        return fingerprint #整个文档的fingerprint为最终各个位>=0的和

    #求海明距离
    def hamming_distance(self, other):
        x = (self.hash ^ other.hash) & ((1 << self.hashbits) - 1)
        tot = 0;
        while x :
            tot += 1
            x &= x - 1
        return tot

    #求相似度
    def similarity (self, other):
        a = float(self.hash)
        b = float(other.hash)
        if a > b : return b / a
        else: return a / b

    #针对source生成hash值   (一个可变长度版本的Python的内置散列)
    def _string_hash(self, source):       
        if source == "":
            return 0
        else:
            x = ord(source[0]) << 7
            m = 1000003
            mask = 2 ** self.hashbits - 1
            for c in source:
                x = ((x * m) ^ ord(c)) & mask
            x ^= len(source)
            if x == -1:
                x = -2
            return x
            

if __name__ == '__main__':
    s = 'This is a test string for testing'
    hash1 = simhash(s.split())

    s = 'This is a test string for testing also'
    hash2 = simhash(s.split())

    s = 'nai nai ge xiong cao'
    hash3 = simhash(s.split())

    print(hash1.hamming_distance(hash2) , "   " , hash1.similarity(hash2))
    print(hash1.hamming_distance(hash3) , "   " , hash1.similarity(hash3))


 

相关文章

flask框架jinja2模板与模板继承实例分析

本文实例讲述了flask框架jinja2模板与模板继承。分享给大家供大家参考,具体如下: jinja2模板 from werkzeug.contrib.cache import Si...

pip 安装库比较慢的解决方法(国内镜像)

对于Python开发用户来讲,PIP安装软件包是家常便饭。但国外的源下载速度实在太慢,浪费时间。而且经常出现下载后安装出错问题。 所以把PIP安装源替换成国内镜像,可以大幅提升下载速度,...

Python如何生成树形图案

Python如何生成树形图案

本文实例为大家分享了Python生成树形图案的具体代码,供大家参考,具体内容如下 先看一下效果,见下图。 上面这颗大树是使用Python + Tkinter绘制的,主要原理为使用分形画...

python 去除二维数组/二维列表中的重复行方法

之前提到去除一维数组中的重复元素用unique()函数,如果要去除二维数组中的重复行该怎么操作呢? import numpy as np arr = np.array([[1, 2]...

介绍Python中的__future__模块

Python的每个新版本都会增加一些新的功能,或者对原来的功能作一些改动。有些改动是不兼容旧版本的,也就是在当前版本运行正常的代码,到下一个版本运行就可能不正常了。 从Python 2....