浅谈Python中列表生成式和生成器的区别

yipeiwu_com6年前Python基础

列表生成式语法:

[x*x for x in range(0,10)] //列表生成式,这里是中括号
//结果 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
(x*x for x in range(0,10)) //生成器, 这里是小括号
//结果 <generator object <genexpr> at 0x7f0b072e6140>

二者的区别很明显:
一个直接返回了表达式的结果列表, 而另一个是一个对象,该对象包含了对表达式结果的计算引用, 通过循环可以直接输出

g = (x*x for x in range(0,10))
for n in g:
  print n

结果

0
1
4
9
16
25
36
49
64
81

    当表达式的结果数量较少的时候, 使用列表生成式还好, 一旦数量级过大, 那么列表生成式就会占用很大的内存,
    而生成器并不是立即把结果写入内存, 而是保存的一种计算方式, 通过不断的获取, 可以获取到相应的位置的值,所以占用的内存仅仅是对计算对象的保存


相关文章

一文总结学习Python的14张思维导图

一文总结学习Python的14张思维导图

本文主要涵盖了 Python 编程的核心知识(暂不包括标准库及第三方库,后续会发布相应专题的文章)。 首先,按顺序依次展示了以下内容的一系列思维导图:基础知识,数据类型(数字,字符串,列...

Python3中的json模块使用详解

1. 概述 JSON (JavaScript Object Notation)是一种使用广泛的轻量数据格式. Python标准库中的json模块提供了JSON数据的处理功能. Pyt...

使用python 3实现发送邮件功能

下面一段简短代码给大家介绍python 3实现发送邮件功能,具体代码如下所示: import smtplib from email.mime.text import MIMEText...

python2与python3中关于对NaN类型数据的判断和转换方法

python2与python3中关于对NaN类型数据的判断和转换方法

今天在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题: ValueError: cannot convert float NaN to integer 一开始是这样的,我用...

python 简单的多线程链接实现代码

服务端: #!/usr/bin/env import SocketServer class myMonitorHandler(SocketServer.BaseRequestHand...