python2与python3中关于对NaN类型数据的判断和转换方法

yipeiwu_com6年前Python基础

今天在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题:

ValueError: cannot convert float NaN to integer 

一开始是这样的,我用的jupyter是python35的,使用DataFrame读入了数据,其中有一列是year,默认读入时是将year这一列转换为了float,所以就有了这样的现象:

python2 python3 对NaN类型数据的判断和转换

年份都是float类型了,看得我强迫症都犯了。于是通过这样的代码来进行强转,于是就报了上面的错误了。

df.year = [int(y) for y in df.year]

简单描述一下问题,其实就是NaN在python35中无法被强转。

首先说一下,NaN类型在python25中在强转int的时候默认是转换为0的,而在python25之后的版本再进行转换的时候就会报以上的错误。

我们先打印看一下np.nan的类型:

print(type(np.nan))
<type 'float'>

np.nan是float类型,但是在进行int转换的时候就会报错。

解决方法:

使用is或者==进行判断是不是NaN,不是NaN进行强转int,是则用0代替。

先说一下==和is使用时的区别:

is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同。

如果有a跟b两个变量,只有数值型和字符串型的情况下,a is b才为True,当a和b是tuple,list,dict、set或者是实例化对象时,a is b为False。

==是python标准操作符中的比较操作符,用来比较判断两个对象的value(值)是否相等。

通过下面的代码可以看出,np.nan==np.nan结果是False,但是np.nan is np.nan却是True。

a = np.nan
 
 
print(a == np.nan)
print(a == a)
print(a is np.nan)
print(a is a)
 
 
False
False
True
True

因此,通过每个元素与自身比较就可以解决了,代码如下:

year = []
for y in df.year:
 if y == y:
  year.append(int(y))
 else:
  year.append(0)

以上这篇python2与python3中关于对NaN类型数据的判断和转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3射线法判断点是否在多边形内

本文实例为大家分享了python3射线法判断点是否在多边形内的具体代码,供大家参考,具体内容如下 #!/usr/bin/python3.4 # -*- coding:utf-8 -*...

总结Python中逻辑运算符的使用

总结Python中逻辑运算符的使用

下表列出了所有Python语言支持的逻辑运算符。假设变量a持有10和变量b持有20,则:  示例: 试试下面的例子就明白了所有的Python编程语言提供了逻辑运算符:...

Python中扩展包的安装方法详解

Python中扩展包的安装方法详解

前言 作为一个pythoner ,包的安装时必须懂的,这个语言跟matlab很类似,开源、共享,只要你有好的方法,都可以作为一个库,供大家下载使用,毕竟俗话说:"人生苦短,请用Pytho...

python迭代器实例简析

本文实例讲述了python迭代器的简单用法,分享给大家供大家参考。具体分析如下: 生成器表达式是用来生成函数调用时序列参数的一种迭代器写法 生成器对象可以遍历或转化为列表(或元组等数据结...

python对于requests的封装方法详解

由于requests是http类接口的核心,因此封装前考虑问题比较多: 1. 对多种接口类型的支持; 2. 连接异常时能够重连; 3. 并发处理的选择; 4. 使用方便,容易维护; 当前...