python2与python3中关于对NaN类型数据的判断和转换方法

yipeiwu_com6年前Python基础

今天在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题:

ValueError: cannot convert float NaN to integer 

一开始是这样的,我用的jupyter是python35的,使用DataFrame读入了数据,其中有一列是year,默认读入时是将year这一列转换为了float,所以就有了这样的现象:

python2 python3 对NaN类型数据的判断和转换

年份都是float类型了,看得我强迫症都犯了。于是通过这样的代码来进行强转,于是就报了上面的错误了。

df.year = [int(y) for y in df.year]

简单描述一下问题,其实就是NaN在python35中无法被强转。

首先说一下,NaN类型在python25中在强转int的时候默认是转换为0的,而在python25之后的版本再进行转换的时候就会报以上的错误。

我们先打印看一下np.nan的类型:

print(type(np.nan))
<type 'float'>

np.nan是float类型,但是在进行int转换的时候就会报错。

解决方法:

使用is或者==进行判断是不是NaN,不是NaN进行强转int,是则用0代替。

先说一下==和is使用时的区别:

is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同。

如果有a跟b两个变量,只有数值型和字符串型的情况下,a is b才为True,当a和b是tuple,list,dict、set或者是实例化对象时,a is b为False。

==是python标准操作符中的比较操作符,用来比较判断两个对象的value(值)是否相等。

通过下面的代码可以看出,np.nan==np.nan结果是False,但是np.nan is np.nan却是True。

a = np.nan
 
 
print(a == np.nan)
print(a == a)
print(a is np.nan)
print(a is a)
 
 
False
False
True
True

因此,通过每个元素与自身比较就可以解决了,代码如下:

year = []
for y in df.year:
 if y == y:
  year.append(int(y))
 else:
  year.append(0)

以上这篇python2与python3中关于对NaN类型数据的判断和转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 3.7.4 安装 opencv的教程

python 3.7.4 安装 opencv的教程

明确一下,我们需要使用python来调用opencv中的库函数,所以需要安装opencv-python。 主要需要安装: 1. opencv-python 2. numpy 第一步先来安...

你真的了解Python的random模块吗?

random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率...

python使用PyCharm进行远程开发和调试

python使用PyCharm进行远程开发和调试

背景描述 有时候Python应用的代码在本地开发环境运行十分正常,但是放到线上以后却出现了莫名其妙的异常,经过再三排查以后还是找不到问题原因,于是就在想,要是可以在服务器环境中进行单步跟...

PYQT5实现控制台显示功能的方法

PYQT5实现控制台显示功能的方法

界面文件 Ui_ControlBoard.py # -*- coding: utf-8 -*- # Form implementation generated from read...

python射线法判断检测点是否位于区域外接矩形内

本文实例为大家分享了python射线法判断点是否位于区域内的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # -*- coding: utf-8 -...