Python性能提升之延迟初始化

yipeiwu_com5年前Python基础

所谓类属性的延迟计算就是将类的属性定义成一个property,只在访问的时候才会计算,而且一旦被访问后,结果将会被缓存起来,不用每次都计算。构造一个延迟计算属性的主要目的是为了提升性能

property

在切入正题之前,我们了解下property的用法,property可以将属性的访问转变成方法的调用。

class Circle(object): 
 def __init__(self, radius): 
  self.radius = radius 
  
 @property
 def area(self): 
  return 3.14 * self.radius ** 2
  
c = Circle(4) 
print c.radius 
print c.area

可以看到,area虽然是定义成一个方法的形式,但是加上@property后,可以直接执行c.area,当成属性访问。

现在问题来了,每次调用c.area,都会计算一次,太浪费cpu了,怎样才能只计算一次呢?这就是lazy property

代码实现

class LazyProperty(object):
 def __init__(self, func):
  self.func = func
 def __get__(self, instance, owner):
  if instance is None:
   return self
  else:
   value = self.func(instance)
   setattr(instance, self.func.__name__, value)
   return value
import math
class Circle(object):
 def __init__(self, radius):
  self.radius = radius
 @LazyProperty
 def area(self):
  print 'Computing area'
  return math.pi * self.radius ** 2
 @LazyProperty
 def perimeter(self):
  print 'Computing perimeter'
  return 2 * math.pi * self.radius

说明

定义了一个延迟计算的装饰器类LazyProperty。Circle是用于测试的类,Circle类有是三个属性半径(radius)、面积(area)、周长(perimeter)。面积和周长的属性被LazyProperty装饰,下面来试试LazyProperty的魔法:

>>> c = Circle(2)
>>> print c.area
Computing area
12.5663706144
>>> print c.area
12.5663706144

在area()中每计算一次就会打印一次“Computing area”,而连续调用两次c.area后“Computing area”只被打印了一次。这得益于LazyProperty,只要调用一次后,无论后续调用多少次都不会重复计算。

相关文章

python自动化测试之DDT数据驱动的实现代码

python自动化测试之DDT数据驱动的实现代码

时隔已久,再次冒烟,自动化测试工作仍在继续,自动化测试中的数据驱动技术尤为重要,不然咋去实现数据分离呢,对吧,这里就简单介绍下与传统unittest自动化测试框架匹配的DDT数据驱动技术...

使用python的pandas为你的股票绘制趋势图

使用python的pandas为你的股票绘制趋势图

前言 手里有一点点公司的股票, 拿不准在什么时机抛售, 程序员也没时间天天盯着看,不如动手写个小程序, 把股票趋势每天早上发到邮箱里,用 python 的 pandas, matplot...

Python 26进制计算实现方法

本文实例讲述了Python 26进制计算方法。分享给大家供大家参考。具体分析如下: 题目是这样的: 假设A=1,B=2,C=3...AA=27,AB=28...AAA=xxx(表示某个数...

python 读写中文json的实例详解

 python 读写中文json的实例详解 读写中文json 想要 读写中文json ,可以使用python中的 json 库可以对json进行操作。读入数据可以使用 jso...

Python产生一个数值范围内的不重复的随机数的实现方法

Python产生一个数值范围内的不重复的随机数,可以使用random模块中的random.sample函数,其用法如下: import random random.sample(po...