利用Python读取文件的四种不同方法比对

yipeiwu_com6年前Python基础

前言

大家都知道Python 读文件的方式多种多样,但是当需要读取一个大文件的时候,不同的读取方式会有不一样的效果。下面就来看看详细的介绍吧。

场景

逐行读取一个 2.9G 的大文件

  • CPU i7 6820HQ
  • RAM 32G

方法

对每一行的读取进行一次分割字符串操作

以下方法都使用 with…as 方法打开文件。

with 语句适用于对资源进行访问的场合,确保不管使用过程中是否发生异常都会执行必要的“清理”操作,释放资源,比如文件使用后自动关闭、线程中锁的自动获取和释放等。

方法一 最通用的读文件方式

with open(file, 'r') as fh:
 for line in fh.readlines():
 line.split("|")

运行结果: 耗时 15.4346568584 秒

系统监视器中显示内存从 4.8G 一下子飙到了 8.4G, fh.readlines() 将读取的所有行数据存到内存,这种方法适合小文件。

方法二

with open(file, 'r') as fh:
 line = fh.readline()
 while line:
 line.split("|")

运行结果: 耗时 22.3531990051 秒

内存几乎没有变化,因为内存中只存取一行的数据,但是时间明显比上一次的长,对于进一步处理数据来说效率不高。

方法三

with open(file) as fh:
 for line in fh:
 line.split("|")

运行结果: 耗时 13.9956979752 秒

内存几乎没有变化,速度也比方法二快。

for line in fh 将文件对象 fh 视为可迭代的,它自动使用缓冲的 IO 和内存管理,因此您不必担心大文件。这是很 pythonic 的方式!

方法四 fileinput 模块

for line in fileinput.input(file):
 line.split("|")

运行结果: 耗时 26.1103110313 秒

内存增加了 200-300 MB,速度是以上最慢的。

总结

以上方法仅供参考,公认的大文件读取方法还是三最好。但是具体情况还是要根据机器的性能、处理数据的复杂度。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Python的Flask框架及Nginx实现静态文件访问限制功能

Nginx配置 Ngnix,一个高性能的web服务器,毫无疑问它是当下的宠儿。卓越的性能,灵活可扩展,在服务器领域里攻城拔寨,征战天下。 静态文件对于大多数website是不可或缺的一部...

Python的Django框架中的数据过滤功能

我们很少会一次性从数据库中取出所有的数据;通常都只针对一部分数据进行操作。 在Django API中,我们可以使用`` filter()`` 方法对数据进行过滤: >>&...

python打开文件并获取文件相关属性的方法

本文实例讲述了python打开文件并获取文件相关属性的方法。分享给大家供大家参考。具体分析如下: 下面的代码通过open函数打开文件,并输出文件名、打开状态、打开模式等属性 #!/u...

numpy中实现ndarray数组返回符合特定条件的索引方法

numpy中实现ndarray数组返回符合特定条件的索引方法

在numpy的ndarray类型中,似乎没有直接返回特定索引的方法,我只找到了where函数,但是where函数对于寻找某个特定值对应的索引很有用,对于返回一定区间内值的索引不是很有效,...

详解Django中六个常用的自定义装饰器

装饰器作用 decorator是当今最流行的设计模式之一,很多使用它的人并不知道它是一种设计模式。这种模式有什么特别之处? 有兴趣可以看看Python Wiki上例子,使用它可以...