python中map()函数的使用方法示例

yipeiwu_com6年前Python基础

前言

在python里有一个函数map(),它有点高大上的感觉。本文将详细给大家介绍python中map()函数使用的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:

或许你已经看过GOOGLE最挣钱的论文:

“MapReduce: Simplified Data Processing on Large Clusters”

Google的那篇MapReduce论文里说:Our abstraction is inspired by the map and reduce primitives present in Lisp and many other functional languages。

这句话提到了MapReduce思想的渊源,大致意思是,MapReduce的灵感来源于函数式语言(比如Lisp)中的内置函数map和reduce。

那么map()到底是干什么呢?

其实map()函数就是一个数据集到另一个数据集的映射的关系,中间并没有减少,或增加元素的。因此在python里,map()函数就是把多个列表对象里的元素,按顺序取出来,然后放进函数里进行操作,计算出来结果。它是一个并行的关系,并没有减少元素。

如下面例子:

#python 3. 6 
#蔡军生 
#http://blog.csdn.net/caimouse/article/details/51749579 
# 
 
def sum(x, y): 
 return x + y 
 
list1 = [1, 3, 5, 7] 
list2 = [2, 4, 6, 8] 
 
result = map(sum, list1, list2) 
print([x for x in result]) 

输出结果如下:

[3, 7, 11, 15]

同理,也可以把map函数处理的思想用到集群服务器上,就是把很多数据切分,然后对每一块数据分别放到不同的电脑进行并行处理,并且都是同一种映射关系的计算,数据个数并没有增加或减少。然后再把这些处理过的数据,再集中到一起进行reduce过程。

至于python里的reduce()函数是怎么样处理呢?大家可以通过这篇文章学习下。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

神经网络理论基础及Python实现详解

神经网络理论基础及Python实现详解

一、多层前向神经网络 多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成; 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入;...

Django如何实现网站注册用户邮箱验证功能

Django如何实现网站注册用户邮箱验证功能

我们在很多网站上都可以看到用户注册使用电子邮件激活或启用的方式。也就是说,用户在注册后填写正确的电子邮件地址,接着网站会发送一封启用电子邮件到用户设置的电子邮件的邮箱中,并在邮件中提供一...

利用Python操作消息队列RabbitMQ的方法教程

前言 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。 MQ全称为Message Queue, 消息队列(...

python字典get()方法用法分析

本文实例讲述了python字典get()方法用法。分享给大家供大家参考。具体分析如下: 如果我们需要获取字典值的话,我们有两种方法,一个是通过dict['key'],另外一个就是dict...

numpy求平均值的维度设定的例子

废话不多说,我就直接上代码吧! >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) # 将上面二...