Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com5年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解在python操作数据库中游标的使用方法

cursor就是一个Cursor对象,这个cursor是一个实现了迭代器(def__iter__())和生成器(yield)的MySQLdb对象,这个时候cursor中还没有数据,只有等...

Python实现中文数字转换为阿拉伯数字的方法示例

Python实现中文数字转换为阿拉伯数字的方法示例

本文实例讲述了Python实现中文数字转换为阿拉伯数字的方法。分享给大家供大家参考,具体如下: 一、需求 今天写了三千二百行代码。 今天写了3200行代码。 两行意思相同,只是...

Python多线程应用于自动化测试操作示例

Python多线程应用于自动化测试操作示例

本文实例讲述了Python多线程应用于自动化测试操作。分享给大家供大家参考,具体如下: 多线程执行测试用例 实例: import threading from time import...

利用python写个下载teahour音频的小脚本

前言 最近空闲的时候看到了之前就关注的一个小站http://teahour.fm/,一直想把这里的音频都听一遍,可转眼间怎么着也有两年了,却什么也没做。有些伤感,于是就写了个脚本,抓了下...

python装饰器初探(推荐)

一、含有一个装饰器 #encoding: utf-8 ############含有一个装饰器######### def outer(func): def inner(*args...