tensorflow实现KNN识别MNIST

yipeiwu_com6年前Python基础

KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。

KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。

__author__ = 'freedom' 
import tensorflow as tf 
import numpy as np 
 
def loadMNIST(): 
 from tensorflow.examples.tutorials.mnist import input_data 
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
 return mnist 
def KNN(mnist): 
 train_x,train_y = mnist.train.next_batch(5000) 
 test_x,test_y = mnist.train.next_batch(200) 
 
 xtr = tf.placeholder(tf.float32,[None,784]) 
 xte = tf.placeholder(tf.float32,[784]) 
 distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) 
 
 pred = tf.argmin(distance,0) 
 
 init = tf.initialize_all_variables() 
 
 sess = tf.Session() 
 sess.run(init) 
 
 right = 0 
 for i in range(200): 
  ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) 
  print 'prediction is ',np.argmax(train_y[ansIndex]) 
  print 'true value is ',np.argmax(test_y[i]) 
  if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): 
   right += 1.0 
 accracy = right/200.0 
 print accracy 
 
if __name__ == "__main__": 
 mnist = loadMNIST() 
 KNN(mnist) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python模块汇总(常用第三方库)

Python模块汇总(常用第三方库)

模块 定义 计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块 优点:...

python顺序的读取文件夹下名称有序的文件方法

如下所示: import os path="/home/test/" #待读取的文件夹 path_list=os.listdir(path) path_list.sort() #对读...

numpy排序与集合运算用法示例

numpy排序与集合运算用法示例

这里有numpy数组的相关介绍/post/130657.htm 排序 numpy与python列表内置的方法类似,也可通过sort方法进行排序。 用法如下: In [1]: imp...

解决python3 json数据包含中文的读写问题

python3 默认的是UTF-8格式,但在在用dump写入的时候仍然要注意:如下 import json data1 = { "TestId": "testcase001",...

用python脚本24小时刷浏览器的访问量方法

如下所示: # -*- coding=utf-8 -*- import urllib2 import socket import time urls = raw_input("...