对pandas replace函数的使用方法小结

yipeiwu_com6年前Python基础

语法:replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

使用方法如下:

import numpy as np 
import pandas as pd 
df = pd.read_csv('emp.csv') 
df 

#Series对象值替换
s = df.iloc[2]#获取行索引为2数据
#单值替换
s.replace('?',np.nan)#用np.nan替换?
s.replace({'?':'NA'})#用NA替换?
#多值替换
s.replace(['?',r'$'],[np.nan,'NA'])#列表值替换
s.replace({'?':np.nan,'$':'NA'})#字典映射
#同缺失值填充方法类似
s.replace(['?','$'],method='pad')#向前填充
s.replace(['?','$'],method='ffill')#向前填充
s.replace(['?','$'],method='bfill')#向后填充
#limit参数控制填充次数
s.replace(['?','$'],method='bfill',limit=1)
#DataFrame对象值替换
#单值替换
df.replace('?',np.nan)#用np.nan替换?
df.replace({'?':'NA'})#用NA替换?
#按列指定单值替换
df.replace({'EMPNO':'?'},np.nan)#用np.nan替换EMPNO列中?
df.replace({'EMPNO':'?','ENAME':'.'},np.nan)#用np.nan替换EMPNO列中?和ENAME中.
#多值替换
df.replace(['?','.','$'],[np.nan,'NA','None'])##用np.nan替换?用NA替换. 用None替换$
df.replace({'?':'NA','$':None})#用NA替换? 用None替换$
df.replace({'?','$'},{'NA',None})#用NA替换? 用None替换$
#正则替换
df.replace(r'\?|\.|\$',np.nan,regex=True)#用np.nan替换?或.或$原字符
df.replace([r'\?',r'\$'],np.nan,regex=True)#用np.nan替换?和$
df.replace([r'\?',r'\$'],[np.nan,'NA'],regex=True)#用np.nan替换?用NA替换$符号
df.replace(regex={r'\?':None})
#value参数显示传递
df.replace(regex=[r'\?|\.|\$'],value=np.nan)#用np.nan替换?或.或$原字符

以上这篇对pandas replace函数的使用方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3.6根据m3u8下载mp4视频

python3.6根据m3u8下载mp4视频

需要下载某网站的视频,chrome浏览器按F12打开开发者模式,发现视频链接是以"blob:http"开头的链接,打开这个链接后找不到网页,网上查了下,找到了下载方法,在这里做个记录,如...

Dlib+OpenCV深度学习人脸识别的方法示例

Dlib+OpenCV深度学习人脸识别的方法示例

前言 人脸识别在LWF(Labeled Faces in the Wild)数据集上人脸识别率现在已经99.7%以上,这个识别率确实非常高了,但是真实的环境中的准确率有多少呢?我没有这方...

python 禁止函数修改列表的实现方法

有时候,需要禁止函数修改列表。例如要对裂变进行修改操作,也要保留原来的未打印的设计列表,以供备案。为解决这个问题,可向函数传递列表的副本而不是原件;这样函数所做的任何修改都只影响副本,而...

python里大整数相乘相关技巧指南

问题 大整数相乘 思路说明 对于大整数计算,一般都要用某种方法转化,否则会溢出。但是python无此担忧了。 Python支持“无限精度”的整数,一般情况下不用考虑整数溢出的问题,而且P...

Python实现的多项式拟合功能示例【基于matplotlib】

Python实现的多项式拟合功能示例【基于matplotlib】

本文实例讲述了Python实现的多项式拟合功能。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- #! python2 import numpy as...