Python基于pyCUDA实现GPU加速并行计算功能入门教程

yipeiwu_com6年前Python基础

本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能。分享给大家供大家参考,具体如下:

Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长。而python 作为一门广泛使用的语言,具有 简单易学、语法简单、开发迅速等优点。作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献–pyCUDA。

pyCUDA特点

  • CUDA完全的python实现
  • 编码更为灵活、迅速、自适应调节代码
  • 更好的鲁棒性,自动管理目标生命周期和错误检测
  • 包含易用的工具包,包括基于GPU的线性代数库、reduction和scan,添加了快速傅里叶变换包和线性代数包LAPACK
  • 完整的帮助文档Wiki

pyCUDA的工作流程

具体的调用流程如下:

调用基本例子

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(
  drv.Out(dest), drv.In(a), drv.In(b),
  block=(400,1,1), grid=(1,1))
print dest-a*b
#tips: copy from hello_gpu.py in the package.

具体内容

  • 设备交互
  • Profiler Control
  • 动态编译
  • OpenGL交互
  • GPU数组
  • 超编程技术

补充内容:

对于GPU 加速python还有功能包,例如处理图像的pythonGPU加速包—— pyGPU
以及专门的GPU 加速python机器学习包—— scikitCUDA
Matlab对应的工具包并行计算工具箱GPU计算技术
以及教程介绍文档

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python json 错误xx is not JSON serializable解决办法

Python json 错误xx is not JSON serializable解决办法 在使用json的时候经常会遇到xxx  is not JSON serializab...

python如何求解两数的最大公约数

题目: 给定两个自然数,求这两个数的最大公约数。 分析: 单看题目的话,非常简单,我们可以循环遍历自然数,如果能够整除两个自然数,就把这个数记下来,在这些记录中找到最大的一个。 但...

Python 从一个文件中调用另一个文件的类方法

如果是在同一个 module中(也就是同一个py文件里),直接用就可以 如果在不同的module里,例如 a.py里有 class A: b.py 里有 class B: 如果你要在cl...

Python获取网段内ping通IP的方法

问题描述 在某些问题背景下,需要确认是否多台终端在线,也就是会使用我们牛逼的ping这个命令,做一些的ping操作,如果需要确认的设备比较少,也还能承受。倘若,在手中维护的设备很多。那么...

使用python绘制常用的图表

使用python绘制常用的图表

本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上。但两者在绘制图表过程中的思路大致相同,Exc...