python开启摄像头以及深度学习实现目标检测方法

yipeiwu_com5年前Python基础

最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般。利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的)。看来opencv对于摄像头的兼容性仍然不是很完善。

我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开。最后采用pygame实现了摄像头的采集功能,这里直接给大家分享具体实现代码(python3.6,cv2,opencv3.3,ubuntu16.04)。中间注释的部分是我上述方法打开摄像头的尝试,说不定有适合自己的。

import pygame.camera
import time
import pygame
import cv2
import numpy as np
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return image_np, frame
 
 
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(0.1)
screen = pygame.display.set_mode([640, 480])
 
while True:
 image = cam.get_image()
 
 cv_image, frame = pygame_to_cvimage(image)
 
 screen.fill([0, 0, 0])
 screen.blit(image, (0, 0))
 pygame.display.update()
 cv2.imshow('frame', frame)
 key = cv2.waitKey(1)
 if key & 0xFF == ord('q'):
  break
 
 
 #pygame.image.save(image, "pygame1.jpg")
 
cam.stop()
 
 
 

上述代码需要注意一个地方,就是pygame图片和opencv图片的转化(pygame_to_cvimage)有些地方采用cv.CreateImageHeader和SetData来实现,注意这两个函数在opencv3+后就消失了。因此采用numpy进行实现。

至于目标检测,由于现在网上有很多实现的方法,MobileNet等等。这里我不讲解具体原理,因为我的研究方向不是这个,这里直接把代码贴出来,亲测成功了。

from imutils.video import FPS
import argparse
import imutils
 
 
import v4l2
import fcntl
 
import v4l2capture
import select
import image
 
import pygame.camera
import pygame
import cv2
import numpy as np
import time
 
def surface_to_string(surface):
 """convert pygame surface into string"""
 return pygame.image.tostring(surface, 'RGB')
 
def pygame_to_cvimage(surface):
 """conver pygame surface into cvimage"""
 
 #cv_image = np.zeros(surface.get_size, np.uint8, 3)
 image_string = surface_to_string(surface)
 image_np = np.fromstring(image_string, np.uint8).reshape(480, 640, 3)
 frame = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
 return frame
 
 
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True, help="path to caffe deploy prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to caffe pretrained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detection")
args = vars(ap.parse_args())
 
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
   "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
 
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
 
 
print("[INFO] starting video stream ...")
 
###### opencv ########
#vs = VideoStream(src=1).start()
#
#camera = cv2.VideoCapture(0)
#if not camera.isOpened():
# print("camera is not open")
#time.sleep(2.0)
 
 
###### v4l2 ########
 
#vd = open('/dev/video0', 'r')
#cp = v4l2.v4l2_capability()
#fcntl.ioctl(vd, v4l2.VIDIOC_QUERYCAP, cp)
 
#cp.driver
 
 
##### v4l2_capture
#video = v4l2capture.Video_device("/dev/video0")
#size_x, size_y = video.set_format(640, 480, fourcc= 'MJPEG')
#video.create_buffers(30)
 
#video.queue_all_buffers()
 
#video.start()
 
##### pygame ####
pygame.camera.init()
pygame.camera.list_cameras()
cam = pygame.camera.Camera("/dev/video0", [640, 480])
 
cam.start()
time.sleep(1)
 
fps = FPS().start()
 
 
while True:
 #try:
 # frame = vs.read()
 #except:
 # print("camera is not opened")
 
 #frame = imutils.resize(frame, width=400)
 #(h, w) = frame.shape[:2]
 
 
 #grabbed, frame = camera.read()
 #if not grabbed:
 # break
 #select.select((video,), (), ())
 #frame = video.read_and_queue()
 
 #npfs = np.frombuffer(frame, dtype=np.uint8)
 #print(len(npfs))
 #frame = cv2.imdecode(npfs, cv2.IMREAD_COLOR)
 
 image = cam.get_image()
 frame = pygame_to_cvimage(image)
 
 frame = imutils.resize(frame, width=640)
 blob = cv2.dnn.blobFromImage(frame, 0.00783, (640, 480), 127.5)
 
 net.setInput(blob)
 detections = net.forward()
 
 for i in np.arange(0, detections.shape[2]):
 
  confidence = detections[0, 0, i, 2]
 
  if confidence > args["confidence"]:
 
   idx = int(detections[0, 0, i, 1])
   box = detections[0, 0, i, 3:7]*np.array([640, 480, 640, 480])
   (startX, startY, endX, endY) = box.astype("int")
 
   label = "{}:{:.2f}%".format(CLASSES[idx], confidence*100)
   cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
   y = startY - 15 if startY - 15 > 15 else startY + 15
 
   cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1)& 0xFF
 
 if key ==ord("q"):
  break
 
 
fps.stop()
print("[INFO] elapsed time :{:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS :{:.2f}".format(fps.fps()))
 
 
 
cv2.destroyAllWindows()
 
#vs.stop()
 

上面的实现需要用到两个文件,是caffe实现好的模型,我直接上传(文件名为MobileNetSSD_deploy.caffemodel和MobileNetSSD_deploy.prototxt,上google能够下载到)。

以上这篇python开启摄像头以及深度学习实现目标检测方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python hough变换检测直线的实现方法

python hough变换检测直线的实现方法

1 原理  2 检测步骤 将参数空间(ρ,θ) 量化成m*n(m为ρ的等份数,n为θ的等份数)个单元,并设置累加器矩阵,初始值为0; 对图像边界上的每一个点(x,y)带入ρ=...

python与C、C++混编的四种方式(小结)

混编的含义有两种, 一种是在python里面写C 一种是C里面写python 本文主要是进行简化,方便使用。 ######################################...

简单的python协同过滤程序实例代码

本文研究的主要是python协同过滤程序的相关内容,具体介绍如下。 关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那么通常的做法就是问问周...

Python模块_PyLibTiff读取tif文件的实例

Usage example (libtiff wrapper) from libtiff import TIFF # to open a tiff file for reading:...

python3实现多线程聊天室

python3实现多线程聊天室

使用python3创建多线程聊天室,供大家参考,具体内容如下 import threading import socket #socket udpSocket = None #...