对pandas的算术运算和数据对齐实例详解

yipeiwu_com6年前Python基础

pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集。

一、算术运算

a、series的加法运算

  s1 = Series([1,2,3],index=["a","b","c"])
  s2 = Series([4,5,6],index=["a","c","e"])
  print(s1+s2)
  '''
  a  5.0
  b  NaN
  c  8.0
  e  NaN
  '''

sereis相加会自动进行数据对齐操作,在不重叠的索引处会使用NA(NaN)值进行填充,series进行算术运算的时候,不需要保证series的大小一致。

b、DataFrame的加法运算


  d1 = np.arange(1,10).reshape(3,3)
  dataFrame1 = DataFrame(d1,index=["a","b","c"],columns=["one","two","three"])
  d2 = np.arange(1,10).reshape(3,3)
  dataFrame2 = DataFrame(d2,index=["a","b","e"],columns=["one","two","four"])
  print(dataFrame1+dataFrame2)
  '''
    four one three  two
  a  NaN 2.0  NaN  4.0
  b  NaN 8.0  NaN 10.0
  c  NaN NaN  NaN  NaN
  e  NaN NaN  NaN  NaN
  '''

dataFrame相加时,对齐操作需要行和列的索引都重叠的时候才回相加,否则会使用NA值进行填充。

二、指定填充值

  s1 = Series([1,2,3],index=["a","b","c"])
  s2 = Series([4,5,6],index=["a","c","e"])
  print( s1.add(s2,fill_value=0))
  '''
  a  5.0
  b  2.0
  c  8.0
  e  6.0
  '''

需要注意的时候,使用add方法对两个series进行相加的时候,设置fill_value的值是对于不存在索引的series用指定值进行填充后再进行相加。除了加法add,还有sub减法,div除法,mul乘法,使用方式与add相同。DataFrame与series一样。

  s1 = Series([1,2,3],index=["a","b","c"])
  s2 = Series([4,5,6],index=["a","c","e"])
  print(s2.reindex(["a","b","c","d"],fill_value=0))
  '''
  a  4
  b  0
  c  5
  d  0
  '''
  s3 = s1 + s2
  print(s3.reindex(["a","b","c","e"],fill_value=0))
  '''
  a  5.0
  b  NaN
  c  8.0
  e  NaN
  '''

使用reindex进行填充的时候,需要注意的是,不能对已经是值为NaN的进行重新赋值,只能对使用reindex之前不存在的所以使用指定的填充值,DataFrame也是一样的。

三、DataFrame与Series的混合运算

a、DataFrame的行进行广播

  a = np.arange(9).reshape(3,3)
  d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
  #取d的第一行为Series
  s = d.ix[0]
  print(d+s)
  '''
    one two three
  a  0  2   4
  b  3  5   7
  c  6  8   10
  '''

b、DataFrame的列进行广播

  a = np.arange(9).reshape(3,3)
  d = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
  #取d的第一列为Series
  s = d["one"]
  print(d.add(s,axis=0))
  '''
    one two three
  a  0  1   2
  b  6  7   8
  c  12  13   14
  '''

对列进行广播的时候,必须要使用add方法,而且还要将axis设置为0,不然就会得到下面的结果

  print(d.add(s))
  '''
    a  b  c one three two
  a NaN NaN NaN NaN  NaN NaN
  b NaN NaN NaN NaN  NaN NaN
  c NaN NaN NaN NaN  NaN NaN
  '''

以上这篇对pandas的算术运算和数据对齐实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中反射用法实例

本文实例讲述了python中反射用法。分享给大家供大家参考。具体如下: import sys, types,new def _get_mod(modulePath): try:...

如何使用Python进行OCR识别图片中的文字

朋友需要一个工具,将图片中的文字提取出来。我帮他在网上找了一些OCR的应用,都不好用。所以准备自己研究,写一个Web APP供他使用。 OCR1,全称Optical character...

python实现感知机线性分类模型示例代码

python实现感知机线性分类模型示例代码

前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。 通过梯度...

在Django框架中编写Contact表单的教程

虽然我们一直使用书籍搜索的示例表单,并将起改进的很完美,但是这还是相当的简陋: 只包含一个字段,q。这简单的例子,我们不需要使用Django表单库来处理。 但是复杂一点的表单就需要多方面...

python图形用户接口实例详解

python图形用户接口实例详解

本文实例为大家分享了python图形用户接口实例的具体代码,供大家参考,具体内容如下 运用tkinter图形库,模拟聊天应用界面,实现信息发送. from tkinter impor...