python实现感知机线性分类模型示例代码

yipeiwu_com6年前Python基础

前言

感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。

通过梯度下降使误分类的损失函数最小化,得到了感知器模型。

本节为大家介绍实现感知机实现的具体原理代码:

行结果如图所示:

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

在Pycharm中对代码进行注释和缩进的方法详解

一、注释 1. #单行注释 2. """ 多行注释 """ 3. pycharm多行注释快捷键:Ctrl+/ 二、缩进 缩进:Tab 反向缩进:Shift+Tab 以上这篇在...

Python实现图片转字符画的代码实例

Python实现图片转字符画的代码实例

原理 1. 计算出图片颜色对应的灰度值,计算公式如下     gray = 0.2126 * r + 0.7152 * g + 0.0722 * b 2...

pandas 小数位数 精度的处理方法

控制台打印时显示的2位小数: pd.set_option('precision', 2) 实际修改数据精度: 官例:http://pandas.pydata.org/pandas-...

python中partial()基础用法说明

前言 一个函数可以有多个参数,而在有的情况下有的参数先得到,有的参数需要在后面的情景中才能知道,python 给我们提供了partial函数用于携带部分参数生成一个新函数。 在funct...

基于python实现文件加密功能

基于python实现文件加密功能

这篇文章主要介绍了基于python实现文件加密功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 生活中,有时候我们需要对一些重要的文...