python批量识别图片指定区域文字内容

yipeiwu_com5年前Python基础

Python批量识别图片指定区域文字内容,供大家参考,具体内容如下

简介

对于一张图片,需求识别指定区域的内容

1.截取原始图上的指定图片当做模板
2.根据模板相似度去再原始图片上识别准确坐标
3.根据坐标剪切出指定位置图片,也就是所需的内容区域
4.对指定位置图片进行ocr识别

环境

Ubuntu18.04
Python2.7

所需Python模块

1.aircv

用于识别模板再原始图的位置坐标

pip install aircv

2.Pillow

用于剪裁图片

pip install Pillow

3.Tesseract

文字识别
在此也可以用平台端的API进行更精准的识别
ubuntu下Tesseract环境安装

sudo apt-get install libpng12-dev 
sudo apt-get install libjpeg62-dev 
sudo apt-get install libtiff4-dev 
sudo apt-get install gcc 
sudo apt-get install g++ 
sudo apt-get install automake

1.tesseract-ocr安装

sudo apt-get install tesseract-ocr

2.pytesseract安装

pip install pytesseract

Python代码

识别对应位置

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
import aircv


def matchImg(imgsrc, imgobj, confidence=0.2):
 """
  图片对比识别imgobj在imgsrc上的相对位置(批量识别统一图片中需要的部分)
 :param imgsrc: 原始图片路径(str)
 :param imgobj: 待查找图片路径(模板)(str)
 :param confidence: 识别度(0<confidence<1.0)
 :return: None or dict({'confidence': 相似度(float), 'rectangle': 原始图片上的矩形坐标(tuple), 'result': 中心坐标(tuple)})
 """
 imsrc = aircv.imread(imgsrc)
 imobj = aircv.imread(imgobj)

 match_result = aircv.find_template(imsrc, imobj,
         confidence) # {'confidence': 0.5435812473297119, 'rectangle': ((394, 384), (394, 416), (450, 384), (450, 416)), 'result': (422.0, 400.0)}
 if match_result is not None:
  match_result['shape'] = (imsrc.shape[1], imsrc.shape[0]) # 0为高,1为宽

 return match_result

图片剪裁

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
from PIL import Image, ImageEnhance

def cutImg(imgsrc, out_img_name, coordinate):
 """
  根据坐标位置剪切图片
 :param imgsrc: 原始图片路径(str)
 :param out_img_name: 剪切输出图片路径(str)
 :param coordinate: 原始图片上的坐标(tuple) egg:(x, y, w, h) ---> x,y为矩形左上角坐标, w,h为右下角坐标
 :return:
 """
 image = Image.open(imgsrc)
 region = image.crop(coordinate)
 region = ImageEnhance.Contrast(region).enhance(1.5)
 region.save(out_img_name)

图片识别

#!/usr/bin/python2.7 
# -*- coding: utf-8 -*- 
import pytesseract
from PIL import Image

image = Image.open('bb.png')
code = pytesseract.image_to_string(image)
print(code)

对于三方API识别自行研究

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

总结网络IO模型与select模型的Python实例讲解

总结网络IO模型与select模型的Python实例讲解

网络I/O模型 人多了,就会有问题。web刚出现的时候,光顾的人很少。近年来网络应用规模逐渐扩大,应用的架构也需要随之改变。C10k的问题,让工程师们需要思考服务的性能与应用的并发能力。...

python脚本生成caffe train_list.txt的方法

首先给出代码: import os path = "/home/data//" path_exp = os.path.expanduser(path) classes =...

Python生成器generator用法示例

Python生成器generator用法示例

本文实例分析了Python生成器generator用法。分享给大家供大家参考,具体如下: 生成器generator本质是一个函数,它记住上一次在函数体中的位置,在生成器函数下一次调用,会...

python实现字符串中字符分类及个数统计

输入一个字符串,分别统计出其中英文字母、空格、数字和其它字符的个数,本文给出解决方法 编写思路: 1、字符串的遍历,和列表类似,可以把字符串当做元素都是一个字符的一个字符列表,它可以和列...

pyqt弹出新对话框,以及关闭对话框获取数据的实例

如下所示: from PyQt4 import QtGui,QtCore import sys class Web_Browser(QtGui.QDialog): def __i...