24式加速你的Python(小结)

yipeiwu_com5年前Python基础

一,分析代码运行时间

第1式,测算代码运行时间

平凡方法

快捷方法(jupyter环境)

第2式,测算代码多次运行平均时间

平凡方法

快捷方法(jupyter环境)

第3式,按调用函数分析代码运行时间

平凡方法

快捷方法(jupyter环境)

第4式,按行分析代码运行时间

平凡方法

快捷方法(jupyter环境)

二,加速你的查找

第5式,用set而非list进行查找

低速方法

高速方法

第6式,用dict而非两个list进行匹配查找

低速方法

高速方法

三,加速你的循环

第7式,优先使用for循环而不是while循环

低速方法

高速方法

第8式,在循环体中避免重复计算

低速方法

高速方法

四,加速你的函数

第9式,用循环机制代替递归函数

低速方法

高速方法

第10式,用缓存机制加速递归函数

低速方法

高速方法

第11式,用numba加速Python函数

低速方法

高速方法

五,使用标准库函数进行加速

第12式,使用collections.Counter加速计数

低速方法

高速方法

第13式,使用collections.ChainMap加速字典合并

低速方法

高速方法

六,使用高阶函数进行加速

第14式,使用map代替推导式进行加速

低速方法

高速方法

第15式,使用filter代替推导式进行加速

低速方法

高速方法

七,使用numpy向量化进行加速

第16式,使用np.array代替list

低速方法

高速方法

第17式,使用np.ufunc代替math.func

低速方法

高速方法

第18式,使用np.where代替if

低速方法

高速方法

八,加速你的Pandas

第19式,使用csv文件读写代替excel文件读写

低速方法

高速方法

第20式,使用pandas多进程工具pandarallel

低速方法

高速方法

九,使用Dask进行加速

第21式,使用dask加速dataframe

低速方法

高速方法

第22式,使用dask.delayed进行加速

低速方法

高速方法

十,应用多线程多进程加速

第23式,应用多线程加速IO密集型任务

低速方法

高速方法

第24式,应用多进程加速CPU密集型任务

低速方法

高速方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python模块简介之有序字典(OrderedDict)

有序字典-OrderedDict简介 示例 有序字典和通常字典类似,只是它可以记录元素插入其中的顺序,而一般字典是会以任意的顺序迭代的。参见下面的例子: import collect...

pytorch实现线性拟合方式

pytorch实现线性拟合方式

一维线性拟合 数据为y=4x+5加上噪音 结果: import numpy as np from mpl_toolkits.mplot3d import Axes3D from m...

Python之list对应元素求和的方法

本次分享将讲述如何在Python中对多个list的对应元素求和,前提是每个list的长度一样。比如:a=[1,2,3], b=[2,3,4], c=[3,4,5], 对a,b,c的对应元...

Python实现操纵控制windows注册表的方法分析

本文实例讲述了Python实现操纵控制windows注册表的方法。分享给大家供大家参考,具体如下: 使用_winreg模块的话 基本概念: KEY 键 Value 值 函数和...

5款Python程序员高频使用开发工具推荐

5款Python程序员高频使用开发工具推荐

很多Python学习者想必都会有如下感悟:最开始学习Python的时候,因为没有去探索好用的工具,吃了很多苦头。后来工作中深刻体会到,合理使用开发的工具的便利和高效。今天,我就把Pyth...