pandas计数 value_counts()的使用

yipeiwu_com5年前Python基础

在pandas里面常用value_counts确认数据出现的频率。

1. Series 情况下:

pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排序。

import pandas as pd
df = pd.DataFrame({'区域' : ['西安', '太原', '西安', '太原', '郑州', '太原'], 
         '10月份销售' : ['0.477468', '0.195046', '0.015964', '0.259654', '0.856412', '0.259644'],
         '9月份销售' : ['0.347705', '0.151220', '0.895599', '0236547', '0.569841', '0.254784']})
print(df)

统计每个区域出现多少次:

print(df['区域'].value_counts())

每个区域都被计数,并且默认从高到低排序。

如果想升序排列,设置参数 ascending = True:

print(df['区域'].value_counts(ascending=True))

如果想得出计数占比,可以加参数 normalize=True

print(df['区域'].value_counts(normalize=True))

注:空值默认剔除掉的。value_counts()返回的结果是一个Series数组,可以跟别的数组进行计算。

2. DataFrame 情况下:

import pandas as pd
df = pd.DataFrame({'区域1' : ['西安', '太原', '西安', '太原', '郑州', '太原'],
          '区域2' : ['太原', '太原', '西安', '西安', '西安', '太原']})
print(df.apply(pd.value_counts))

区域2中没有郑州,所以是NaN。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用type关键字创建类步骤详解

Python使用type关键字创建类步骤详解

Python使用type关键字创建类 打开命令行窗口,输入python,进入python交互环境 python 一般创建类使用class关键字即可,测试命令如下: class Co...

Django代码性能优化与Pycharm Profile使用详解

Django代码性能优化与Pycharm Profile使用详解

前言 pycharm是python的一个商业的集成开发工具,本人感觉做python开发还是很好用的,django是一个很流行的python web开源框架,本文将通过实例代码给大家介绍了...

运用PyTorch动手搭建一个共享单车预测器

运用PyTorch动手搭建一个共享单车预测器

本文摘自 《深度学习原理与PyTorch实战》 我们将从预测某地的共享单车数量这个实际问题出发,带领读者走进神经网络的殿堂,运用PyTorch动手搭建一个共享单车预测器,在实战过程中掌握...

Python timeit模块的使用实践

Python 中的 timeit 模块可以用来测试一段代码的执行耗时,如一个变量赋值语句的执行时间,一个函数的运行时间等。 timeit 模块是 Python 标准库中的模块,无需安装,...

python如何获取当前文件夹下所有文件名详解

前言 本文主要给大家介绍了关于python获取当前文件夹下所有文件名的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧 os 模块下有两个函数: os.walk(...