详解利用python+opencv识别图片中的圆形(霍夫变换)

yipeiwu_com6年前Python基础

在图片中识别足球

先补充下霍夫圆变换的几个参数知识:

  1. dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器。上述文字不好理解的话,来看例子吧。例如,如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。
  2. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离。这个参数如果太小的话,多个相邻的圆可能被错误地检测成了一个重合的圆。反之,这个参数设置太大的话,某些圆就不能被检测出来了。
  3. param1,有默认值100。它是method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法,它表示传递给canny边缘检测算子的高阈值,而低阈值为高阈值的一半。
  4. param2,也有默认值100。它是method设置的检测方法的对应的参数。对当前唯一的方法霍夫梯度法,它表示在检测阶段圆心的累加器阈值。它越小的话,就可以检测到更多根本不存在的圆,而它越大的话,能通过检测的圆就更加接近完美的圆形了。
  5. minRadius,默认值0,表示圆半径的最小值。
  6. maxRadius,也有默认值0,表示圆半径的最大值。

源代码:

# -*- coding: utf-8 -*- 
""" 
Created on Tue Sep 26 23:15:39 2017 
 
@author: tina 
""" 
import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
 
img = cv2.imread('C:\\Users\\tina\\Pictures\\ahh\\ball.jpg') 
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 
plt.subplot(121),plt.imshow(gray,'gray') 
plt.xticks([]),plt.yticks([]) 
 
circles1 = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1, 
600,param1=100,param2=30,minRadius=80,maxRadius=97) 
circles = circles1[0,:,:] 
circles = np.uint16(np.around(circles)) 
for i in circles[:]:  
  cv2.circle(img,(i[0],i[1]),i[2],(255,0,0),5) 
  cv2.circle(img,(i[0],i[1]),2,(255,0,255),10) 
  cv2.rectangle(img,(i[0]-i[2],i[1]+i[2]),(i[0]+i[2],i[1]-i[2]),(255,255,0),5) 
   
print("圆心坐标",i[0],i[1]) 
plt.subplot(122),plt.imshow(img) 
plt.xticks([]),plt.yticks([]) 

原图:

识别后效果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用pip安装模块出现ReadTimeoutError: HTTPSConnectionPool的解决方法

今天使用pip安装第三库时,有时会报错: pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(hos...

python保存字典和读取字典的实例代码

读取一个已经保存了的字典 f = open('dict_th','r') a = f.read() dict_hi = eval(a) f.close() 保存一个字典 dic...

python return逻辑判断表达式实现解析

这篇文章主要介绍了python return逻辑判断表达式实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.return逻辑...

利用Django模版生成树状结构实例代码

利用Django模版生成树状结构实例代码

前言 我们经常会有这样的需求,比如评论功能,每个评论都有可能会有自己的子评论,如果在界面只展示成一列的话非常不美观,也不能体现出他们的层级关系。那么我们今天就来看看如何使用Django的...

Python绘制3D图形

Python绘制3D图形

3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3...