pytorch中如何使用DataLoader对数据集进行批处理的方法

yipeiwu_com6年前Python基础

最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络。

pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步?

第一步:打开冰箱门。

我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说)。

首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果:

随后我们需要把X和Y组成一个完整的数据集,并转化为pytorch能识别的数据集类型:

我们来看一下这些数据的数据类型:

可以看出我们把X和Y通过Data.TensorDataset() 这个函数拼装成了一个数据集,数据集的类型是【TensorDataset】。

好了,第一步结束了,冰箱门打开了。

第二步:把大象装进去。

就是把上一步做成的数据集放入Data.DataLoader中,可以生成一个迭代器,从而我们可以方便的进行批处理。

DataLoader中也有很多其他参数:

  1. dataset:Dataset类型,从其中加载数据
  2. batch_size:int,可选。每个batch加载多少样本
  3. shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌
  4. sampler:Sampler,可选。从数据集中采样样本的方法。
  5. num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。
  6. collate_fn:callable,可选。
  7. pin_memory:bool,可选
  8. drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。

好了,第二步结束了,大象装进去了。

第三步:把冰箱门关上。

好啦,现在我们就可以愉快的用我们上面定义好的迭代器进行训练啦。

在这里我们利用print来模拟我们的训练过程,即我们在这里对搭建好的网络进行喂入。

输出的结果是:

可以看到,我们一共训练了所有的数据训练了5次。数据中一共10组,我们设置的mini-batch是3,即每一次我们训练网络的时候喂入3组数据,到了最后一次我们只有1组数据了,比mini-batch小,我们就仅输出这一个。

此外,还可以利用python中的enumerate(),是对所有可以迭代的数据类型(含有很多东西的list等等)进行取操作的函数,用法如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python函数式编程指南(三):迭代器详解

3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束。 迭代器不能回退,只能往...

详解小白之KMP算法及python实现

详解小白之KMP算法及python实现

在看子串匹配问题的时候,书上的关于KMP的算法的介绍总是理解不了。看了一遍代码总是很快的忘掉,后来决定好好分解一下KMP算法,算是给自己加深印象。 在将KMP字串匹配问题的时候,我们先来...

pandas DataFrame的修改方法(值、列、索引)

对于DataFrame的修改操作其实有很多,不单单是某个部分的值的修改,还有一些索引的修改、列名的修改,类型修改等等。我们仅选取部分进行介绍。 一、值的修改 DataFrame的修改方法...

在Python中操作文件之read()方法的使用教程

 read()方法读取文件size个字节大小。如果读取命中获得EOF大小字节之前,那么它只能读取可用的字节。 语法 以下是read()方法的语法: fileObject.r...

python使用tensorflow深度学习识别验证码

本文介绍了python使用tensorflow深度学习识别验证码 ,分享给大家,具体如下: 除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorf...