pytorch中如何使用DataLoader对数据集进行批处理的方法

yipeiwu_com6年前Python基础

最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络。

pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步?

第一步:打开冰箱门。

我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说)。

首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果:

随后我们需要把X和Y组成一个完整的数据集,并转化为pytorch能识别的数据集类型:

我们来看一下这些数据的数据类型:

可以看出我们把X和Y通过Data.TensorDataset() 这个函数拼装成了一个数据集,数据集的类型是【TensorDataset】。

好了,第一步结束了,冰箱门打开了。

第二步:把大象装进去。

就是把上一步做成的数据集放入Data.DataLoader中,可以生成一个迭代器,从而我们可以方便的进行批处理。

DataLoader中也有很多其他参数:

  1. dataset:Dataset类型,从其中加载数据
  2. batch_size:int,可选。每个batch加载多少样本
  3. shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌
  4. sampler:Sampler,可选。从数据集中采样样本的方法。
  5. num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。
  6. collate_fn:callable,可选。
  7. pin_memory:bool,可选
  8. drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。

好了,第二步结束了,大象装进去了。

第三步:把冰箱门关上。

好啦,现在我们就可以愉快的用我们上面定义好的迭代器进行训练啦。

在这里我们利用print来模拟我们的训练过程,即我们在这里对搭建好的网络进行喂入。

输出的结果是:

可以看到,我们一共训练了所有的数据训练了5次。数据中一共10组,我们设置的mini-batch是3,即每一次我们训练网络的时候喂入3组数据,到了最后一次我们只有1组数据了,比mini-batch小,我们就仅输出这一个。

此外,还可以利用python中的enumerate(),是对所有可以迭代的数据类型(含有很多东西的list等等)进行取操作的函数,用法如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解supervisor使用教程

详解supervisor使用教程

A Process Control System 使用b/s架构、运行在类Unix系统上一个进程监控管理系统它可以使进程以daemon方式运行,并且一直监控进程,在意外退出时能自动重启进...

python3实现字符串操作的实例代码

python3字符串操作 x = 'abc' y = 'defgh' print(x + y) #x+y print(x * 3) #x*n print(x...

详解Python编程中基本的数学计算使用

数 在 Python 中,对数的规定比较简单,基本在小学数学水平即可理解。 那么,做为零基础学习这,也就从计算小学数学题目开始吧。因为从这里开始,数学的基础知识列位肯定过关了。 &g...

pytorch 归一化与反归一化实例

ToTensor中就有转到0-1之间了。 # -*- coding:utf-8 -*- import time import torch from torchvisi...

Python批量修改文件后缀的方法

Python批量修改文件后缀的方法

近期下载了很多各种教程, 但是不幸的是后缀名都是 ".mp4", 而本人喜欢 ".rmvb" 后缀,由于有轻微洁癖, 受不了后面的 ".mp4" 缀, 但是手动修改又太过繁琐, 所以用近...