PyTorch中常用的激活函数的方法示例

yipeiwu_com6年前Python基础

神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:


代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Sigmoid

表达式:

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Tanh

表达式:

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Softplus

表达式:


代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现基于PIL和tesseract的验证码识别功能示例

Python实现基于PIL和tesseract的验证码识别功能示例

本文实例讲述了Python实现基于PIL和tesseract的验证码识别功能。分享给大家供大家参考,具体如下: 之前搞这个搞了一段时间,后面遇到了点小麻烦,导致识别率太低了,最多也就百分...

连接Python程序与MySQL的教程

MySQL是Web世界中使用最广泛的数据库服务器。SQLite的特点是轻量级、可嵌入,但不能承受高并发访问,适合桌面和移动应用。而MySQL是为服务器端设计的数据库,能承受高并发访问,同...

Python-copy()与deepcopy()区别详解

最近在实习,boss给布置了一个python的小任务,学习过程中发现copy()和deepcopy()这对好基友实在是有点过分,搞的博主就有点傻傻分不清啊,但是呢本着一探到底的精神,还是...

windows上安装Anaconda和python的教程详解

windows上安装Anaconda和python的教程详解

 一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1、不开源,价格贵 2、软件容量大。一般3G以上,高版本甚至达5G以上。 3、只能做...

python实现五子棋小游戏

python实现五子棋小游戏

本文实例为大家分享了python实现五子棋小游戏的具体代码,供大家参考,具体内容如下 暑假学了十几天python,然后用pygame模块写了一个五子棋的小游戏,代码跟有缘人分享一下。...