Django异步任务线程池实现原理

yipeiwu_com6年前Python基础

这篇文章主要介绍了Django异步任务线程池实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

当数据库数据量很大时(百万级),许多批量数据修改请求的响应会非常慢,一些不需要即时响应的任务可以放到后台的异步线程中完成,发起异步任务的请求就可以立即响应

选择用线程池的原因是:线程比进程更为可控。不像子进程,子线程会在所属进程结束时立即结束。线程可共享内存。

请求任务异步处理的原理

使用python manage.py runserver模式启动的Django应用只有一个进程,对于每个请求,主线程会开启一个子线程来处理请求。请求子线程向主线程申请一个新线程,然后把耗时的任务交给新线程,自身立即响应,这就是请求任务异步处理的原理。

可视化线程池

如果想要管理这批异步线程,知道他们是否在运行中,可以使用线程池(ThreadPoolExecutor)。

线程池会先启动若干数量的线程,并让这些线程都处于睡眠状态,当向线程池submit一个任务后,会唤醒线程池中的某一个睡眠线程,让它来处理这个任务,当处理完这个任务,线程又处于睡眠状态。

submit任务后会返回一个期程(future),这个对象可以查看线程池中执行此任务的线程是否仍在处理中

因此可以构建一个全局可视化线程池:

from concurrent.futures.thread import ThreadPoolExecutor


class ThreadPool(object):
  def __init__(self):
    # 线程池
    self.executor = ThreadPoolExecutor(20)
    # 用于存储每个项目批量任务的期程
    self.future_dict = {}

  # 检查某个项目是否有正在运行的批量任务
  def is_project_thread_running(self, project_id):
    future = self.future_dict.get(project_id, None)
    if future and future.running():
      # 存在正在运行的批量任务
      return True
    return False

  # 展示所有的异步任务
  def check_future(self):
    data = {}
    for project_id, future in self.future_dict.items():
      data[project_id] = future.running()
    return data

  def __del__(self):
    self.executor.shutdown()

# 主线程中的全局线程池
# global_thread_pool的生命周期是Django主线程运行的生命周期
global_thread_pool = ThreadPool()

使用:

# 检查异步任务
if global_thread_pool.is_project_thread_running(project_id):
  raise exceptions.ValidationError(detail='存在正在处理的批量任务,请稍后重试')

# 提交一个异步任务
future = global_thread_pool.executor.submit(self.batch_thread, project_id)
global_thread_pool.future_dict[project_id] = future

# 查看所有异步任务
@login_required
def check_future(request):
  data = global_thread_pool.check_future()
  return HttpResponse(status=status.HTTP_200_OK, content=json.dumps(data))

串行执行

使用线程锁

在全局线程池中初始化线程锁

class ThreadPool(object):
  def __init__(self):
    self.executor = ThreadPoolExecutor(20)
    self.future_dict = {}
    self.lock = threading.Lock()

然后执行线程前需要获取锁并再执行结束后释放锁

def batch_thread(self):
  global_thread_pool.lock.acquire()
  try:
    ...
    global_thread_pool.lock.release()
  except Exception:
    trace_log = traceback.format_exc()
    logger.error('异步任务执行失败:\n %s' % trace_log)
    global_thread_pool.lock.release()

需要捕捉异常预防子线程出错而无法释放锁的情况

异步线程任务执行前先检查数据库连接是否可用,然后关掉不可用连接

由于django的数据库连接是保存到线程本地变量中的,通过ThreadPoolExecutor创建的线程会保存各自的数据库连接。

当连接被保存的时间超过mysql连接的最大超时时间,连接失效,但不会被线程释放。

之后再调起线程执行涉及到数据库操作的异步任务时,会用到失效的数据库连接,导致报错“MySQL server has gone away”。

解决方案是在线程池的所有异步任务执行前先检查数据库连接是否可用,然后关掉不可用连接

def batch_thread(self):
  for conn in connections.all():
    conn.close_if_unusable_or_obsolete()
  ...

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python代码打印100-999之间的回文数示例

python代码打印100-999之间的回文数示例

打印100-999之间的回文数(即百位和个位的数字相等),并每10个打印一行 i = 100 x = 0 # 使用计数器,每10个换行打印 while i <= 999:...

Python使用selenium + headless chrome获取网页内容的方法示例

使用python写爬虫时,优选selenium,由于PhantomJS因内部原因已经停止更新,最新版的selenium已经使用headless chrome替换掉了PhantomJS,所...

python线程定时器Timer实现原理解析

这篇文章主要介绍了python线程定时器Timer实现原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.线程定时器Timer...

详解Django中的过滤器

就象本章前面提到的一样,模板过滤器是在变量被显示前修改它的值的一个简单方法。 过滤器使用管道字符,如下所示: {{ name|lower }} 显示的内容是变量 {{ name...

python使用wmi模块获取windows下的系统信息 监控系统

Python用WMI模块获取Windows系统的硬件信息:硬盘分区、使用情况,内存大小,CPU型号,当前运行的进程,自启动程序及位置,系统的版本等信息。 本文实例讲述了python使用...