Tensorflow实现在训练好的模型上进行测试

yipeiwu_com6年前Python基础

Tensorflow可以使用训练好的模型对新的数据进行测试,有两种方法:第一种方法是调用模型和训练在同一个py文件中,中情况比较简单;第二种是训练过程和调用模型过程分别在两个py文件中。本文将讲解第二种方法。

模型的保存

tensorflow提供可保存训练模型的接口,使用起来也不是很难,直接上代码讲解:

#网络结构
w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))
b1 = tf.Variable(tf.zeros([h1_units]))
y = tf.nn.softmax(tf.matmul(w1, x) + b1)
tf.add_to_collection('network-output', y)

x = tf.placeholder(tf.float32, [None, in_units], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
#损失函数与优化函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(rate).minimize(cross_entropy)

saver = tf.train.Saver()
with tf.Session() as sess: 
    sess.run(init) 
    saver.save(sess,"save/model.ckpt") 
    train_step.run({x: train_x, y_: train_y})

以上代码就完成了模型的保存,值得注意的是下面这行代码

tf.add_to_collection('network-output', y)

这行代码保存了神经网络的输出,这个在后面使用导入模型过程中起到关键作用。

模型的导入

模型训练并保存后就可以导入来评估模型在测试集上的表现,网上很多文章只用简单的四则运算来做例子,让人看的头大。还是先上代码:

with tf.Session() as sess:
  saver = tf.train.import_meta_graph('./model.ckpt.meta')
  saver.restore(sess, './model.ckpt')# .data文件
  pred = tf.get_collection('network-output')[0]

  graph = tf.get_default_graph()
  x = graph.get_operation_by_name('x').outputs[0]
  y_ = graph.get_operation_by_name('y_').outputs[0]

  y = sess.run(pred, feed_dict={x: test_x, y_: test_y})

讲解一下关键的代码,首先是pred = tf.get_collection('pred_network')[0],这行代码获得训练过程中网络输出的“接口”,简单理解就是,通过tf.get_collection() 这个方法获取了整个网络结构。获得网络结构后我们就需要喂它对应的数据y = sess.run(pred, feed_dict={x: test_x, y_: test_y}) 在训练过程中我们的输入是

x = tf.placeholder(tf.float32, [None, in_units], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')

因此导入模型后所需的输入也要与之对应可使用以下代码获得:

  x = graph.get_operation_by_name('x').outputs[0]
  y_ = graph.get_operation_by_name('y_').outputs[0]

使用模型的最后一步就是输入测试集,然后按照训练好的网络进行评估

  sess.run(pred, feed_dict={x: test_x, y_: test_y})

理解下这行代码,sess.run() 的函数原型为

run(fetches, feed_dict=None, options=None, run_metadata=None)

Tensorflow对 feed_dict 执行fetches操作,因此在导入模型后的运算就是,按照训练的网络计算测试输入的数据。

以上这篇Tensorflow实现在训练好的模型上进行测试就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python中xlsx,csv以及json文件的相互转化方法详解

最近需要各种转格式,这里对相关代码作一个记录,方便日后查询。 xlsx文件转csv文件 import xlrd import csv def xlsx_to_csv(): wo...

python实现的udp协议Server和Client代码实例

直接上代码:Server端:复制代码 代码如下: #!/usr/bin/env python # UDP Echo Server -  udpserver....

Python标准库06之子进程 (subprocess包) 详解

这里的内容以Linux进程基础和Linux文本流为基础。subprocess包主要功能是执行外部的命令和程序。比如说,我需要使用wget下载文件。我在Python中调用wget程序。从这...

TensorFlow利用saver保存和提取参数的实例

TensorFlow利用saver保存和提取参数的实例

在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件。 saver.save(sess, FLAGS.t...

利用python开发app实战的方法

利用python开发app实战的方法

我很早之前就想开发一款app玩玩,无奈对java不够熟悉,之前也没有开发app的经验,因此一直耽搁了。最近想到尝试用python开发一款app,google搜索了一番后,发现确实有路可寻...