爬山算法简介和Python实现实例

yipeiwu_com6年前Python基础

一、爬山法简介

爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、Python实例

设方程 y = x1+x2-x3,x1是区间[-2, 5]中的整数,x2是区间[2, 6]中的整数,x3是区间[-5, 2]中的整数。使用爬山法,找到使得y取值最小的解。

代码如下:

复制代码 代码如下:

import random

def evaluate(x1, x2, x3):
    return x1+x2-x3

if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]),
           random.randint(x_range[1][0], x_range[1][1]),
           random.randint(x_range[2][0], x_range[2][1])]

    while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol]

        for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break

    print 'best sol:', current_best_value, best_sol
某次运行结果如下:

[[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2]


可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法。

 

相关文章

Python多进程机制实例详解

本文实例讲述了Python多进程机制。分享给大家供大家参考。具体如下: 在以前只是接触过PYTHON的多线程机制,今天搜了一下多进程,相关文章好像不是特别多。看了几篇,小试了一把。程序如...

详解Python中heapq模块的用法

详解Python中heapq模块的用法

heapq 模块提供了堆算法。heapq是一种子节点和父节点排序的树形数据结构。这个模块提供heap[k] <= heap[2*k+1] and heap[k] <= hea...

Python实现剪刀石头布小游戏(与电脑对战)

具体代码如下所述: srpgame.py #!/urs/bin/env python import random all_choice = ['石头','剪刀','布'] win_l...

Selenium鼠标与键盘事件常用操作方法示例

Selenium鼠标与键盘事件常用操作方法示例

本文实例讲述了Selenium鼠标与键盘事件常用操作方法。分享给大家供大家参考,具体如下: Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就...

从django的中间件直接返回请求的方法

实例如下所示: #coding=utf-8 import json import gevent from django.http import HttpResponse from s...