简单介绍Python中利用生成器实现的并发编程

yipeiwu_com5年前Python基础

我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。

多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库,在之前写过的python高可用程序设计方法中提供了类似nginx中master process和worker process间信号处理的方式,保证了业务进程的退出可以被主进程感知。

多线程编程python中有Thread和threading,在linux下所谓的线程,实际上是LWP轻量级进程,其在内核中具有和进程相同的调度方式,有关LWP,COW(写时拷贝),fork,vfork,clone等的资料较多,这里不再赘述。

异步在linux下主要有三种实现select,poll,epoll,关于异步不是本文的重点。

说协程肯定要说yield,我们先来看一个例子:

#coding=utf-8
import time
import sys
# 生产者
def produce(l):
  i=0
  while 1:
    if i < 5:
      l.append(i)
      yield i
      i=i+1
      time.sleep(1)
    else:
      return
   
# 消费者
def consume(l):
  p = produce(l)
  while 1:
    try:
      p.next()
      while len(l) > 0:
        print l.pop()
    except StopIteration:
      sys.exit(0)
l = []
consume(l)

在上面的例子中,当程序执行到produce的yield i时,返回了一个generator,当我们在custom中调用p.next(),程序又返回到produce的yield i继续执行,这样l中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

通过上面的例子我们看到协程的调度对于内核来说是不可见的,协程间是协同调度的,这使得并发量在上万的时候,协程的性能是远高于线程的。

import stackless
import urllib2
def output():
  while 1:
    url=chan.receive()
    print url
    f=urllib2.urlopen(url)
    #print f.read()
    print stackless.getcurrent()
   
def input():
  f=open('url.txt')
  l=f.readlines()
  for i in l:
    chan.send(i)
chan=stackless.channel()
[stackless.tasklet(output)() for i in xrange(10)]
stackless.tasklet(input)()
stackless.run()

关于协程,可以参考greenlet,stackless,gevent,eventlet等的实现。

相关文章

python使用adbapi实现MySQL数据库的异步存储

python使用adbapi实现MySQL数据库的异步存储

之前一直在写有关scrapy爬虫的事情,今天我们看看使用scrapy如何把爬到的数据放在MySQL数据库中保存。 有关python操作MySQL数据库的内容,网上已经有很多内容可以参考了...

Python3的unicode编码转换成中文的问题及解决方案

这篇文章主要介绍了Python3的unicode编码转换成中文的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 从别的地...

Python实现批量执行同目录下的py文件方法

Python实现批量执行同目录下的py文件方法

Python版本:3.5 网上找了好多资料都没有直观的写出怎么批量执行,so,整理了一个小程序。最初是为了用Python进行单元测试,同目录下有两个unittest文件, AllTes...

详解python里的命名规范

文件名 全小写,可使用下划线 包 应该是简短的、小写的名字。如果下划线可以改善可读性可以加入。如mypackage。 模块 与包的规范同。如mymodule。 类 总是使用首字母大写单词...

pandas DataFrame 警告(SettingWithCopyWarning)的解决

刚接触python不久,编程也是三脚猫,所以对常用的这几个工具还没有一个好的使用习惯,毕竟程序语言是头顺毛驴。所以最近在工作中使用的时候在使用pandas的DataFrame时遇到了以下...