Python合并两个字典的常用方法与效率比较

yipeiwu_com6年前Python基础

本文实例讲述了Python合并两个字典的常用方法与效率比较。分享给大家供大家参考。具体分析如下:

下面的代码举例了5种合并两个字典的方法,并且做了个简单的性能测试

#!/usr/bin/python 
import time 
def f1(d1, d2): 
  return dict(d1, **d2) 
def f2(d1, d2): 
  return dict(d1.items() + d2.items()) 
def f3(d1, d2): 
  d = d1.copy() 
  d.update(d2) 
  return d 
def f4(d1, d2): 
  d1.update(d2) 
  return d1 
def f5(d1, d2): 
  d = dict(d1) 
  d.update(d2) 
  return d 
def f6(d1, d2): 
  return (lambda a, b: (lambda a_copy: a_copy.update(b) or a_copy)(a.copy()))(d1, d2) 
def f7(d1, d2): 
  d = {} 
  d.update(d1) 
  d.update(d2) 
  return d 
def t(f, n): 
  st = time.time() 
  for i in range(1000000): 
    dic1 = {'a':'AA','b':'BB','c':'CC'} 
    dic2 = {'A':'aa','B':'bb','C':'cc'} 
    f(dic1, dic2) 
  et = time.time() 
  print '%s cost:%s'%(n, et-st) 
t(f1, 'f1') 
t(f2, 'f2') 
t(f3, 'f3') 
t(f4, 'f4') 
t(f5, 'f5') 
t(f6, 'f6') 
t(f7, 'f7') 

除了f4方法会对字典d1造成破坏性修改之外,另外的几种方法都是把合并的结果作为新的字典返回。

下面是测试结果:

f1 cost:2.382999897 
f2 cost:4.45399999619 
f3 cost:3.02100014687 
f4 cost:1.73000001907 
f5 cost:2.3710000515 
f6 cost:2.89700007439 
f7 cost:2.35600018501 

可以看出f4最为高效,如果不需要保留原字典的话推荐使用f4方法。

希望本文所述对大家的Python程序设计有所帮助。

相关文章

用Python编写分析Python程序性能的工具的教程

用Python编写分析Python程序性能的工具的教程

虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题。 分析程序的性能可以归结为回答...

python实现Dijkstra算法的最短路径问题

python实现Dijkstra算法的最短路径问题

迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法。 1 算法原理 迪杰斯特拉(Dijkstra)算法是一个按照路径长度递增的次序产...

实例解析Python中的__new__特殊方法

__new__ 方法是什么? 如果将类比喻为工厂,那么__init__()方法则是该工厂的生产工人,__init__()方法接受的初始化参 数则是生产所需原料,__init__()方法会...

Python基于property实现类的特性操作示例

本文实例讲述了Python基于property实现类的特性操作。分享给大家供大家参考,具体如下: Python中的特性是一个函数,但是在使用的形式上看起来更像是一个属性。针对一个对象来说...

python 进程 进程池 进程间通信实现解析

1.python 中创建进程的两种方式: from multiprocessing import Process import time def test_(): print '...