Python实现优先级队列结构的方法详解

yipeiwu_com6年前Python基础

最简单的实现
一个队列至少满足2个方法,put和get.
借助最小堆来实现.
这里按"值越大优先级越高"的顺序.

#coding=utf-8 
from heapq import heappush, heappop 
class PriorityQueue: 
  def __init__(self): 
    self._queue = [] 
 
  def put(self, item, priority): 
    heappush(self._queue, (-priority, item)) 
 
  def get(self): 
    return heappop(self._queue)[-1] 
 
q = PriorityQueue() 
q.put('world', 1) 
q.put('hello', 2) 
print q.get() 
print q.get() 

使用heapq模块来实现
下面的类利用 heapq 模块实现了一个简单的优先级队列:

import heapq

class PriorityQueue:
  def __init__(self):
    self._queue = []
    self._index = 0

  def push(self, item, priority):
    heapq.heappush(self._queue, (-priority, self._index, item))
    self._index += 1

  def pop(self):
    return heapq.heappop(self._queue)[-1]

下面是它的使用方式:

>>> class Item:
...   def __init__(self, name):
...     self.name = name
...   def __repr__(self):
...     return 'Item({!r})'.format(self.name)
...
>>> q = PriorityQueue()
>>> q.push(Item('foo'), 1)
>>> q.push(Item('bar'), 5)
>>> q.push(Item('spam'), 4)
>>> q.push(Item('grok'), 1)
>>> q.pop()
Item('bar')
>>> q.pop()
Item('spam')
>>> q.pop()
Item('foo')
>>> q.pop()
Item('grok')
>>>

仔细观察可以发现,第一个 pop() 操作返回优先级最高的元素。 另外注意到如果两个有着相同优先级的元素( foo 和 grok ),pop操作按照它们被插入到队列的顺序返回的。

 函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。

在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。

index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。

为了阐明这些,先假定Item实例是不支持排序的:

>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>

如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。

深入思考
函数 heapq.heappush() 和 heapq.heappop() 分别在队列 _queue 上插入和删除第一个元素, 并且队列_queue保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。 heappop() 函数总是返回”最小的”的元素,这就是保证队列pop操作返回正确元素的关键。 另外,由于push和pop操作时间复杂度为O(log N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。

在上面代码中,队列包含了一个 (-priority, index, item) 的元组。 优先级为负数的目的是使得元素按照优先级从高到低排序。 这个跟普通的按优先级从低到高排序的堆排序恰巧相反。

index 变量的作用是保证同等优先级元素的正确排序。 通过保存一个不断增加的 index 下标变量,可以确保元素按照它们插入的顺序排序。 而且, index 变量也在相同优先级元素比较的时候起到重要作用。

为了阐明这些,先假定Item实例是不支持排序的:

>>> a = Item('foo')
>>> b = Item('bar')
>>> a < b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

如果你使用元组 (priority, item) ,只要两个元素的优先级不同就能比较。 但是如果两个元素优先级一样的话,那么比较操作就会跟之前一样出错:

>>> a = (1, Item('foo'))
>>> b = (5, Item('bar'))
>>> a < b
True
>>> c = (1, Item('grok'))
>>> a < c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: Item() < Item()
>>>

通过引入另外的 index 变量组成三元组 (priority, index, item) ,就能很好的避免上面的错误, 因为不可能有两个元素有相同的 index 值。Python在做元组比较时候,如果前面的比较以及可以确定结果了, 后面的比较操作就不会发生了:

>>> a = (1, 0, Item('foo'))
>>> b = (5, 1, Item('bar'))
>>> c = (1, 2, Item('grok'))
>>> a < b
True
>>> a < c
True
>>>

如果你想在多个线程中使用同一个队列,那么你需要增加适当的锁和信号量机制。 可以查看12.3小节的例子演示是怎样做的。

heapq 模块的官方文档有更详细的例子程序以及对于堆理论及其实现的详细说明。

相关文章

基于numpy中数组元素的切片复制方法

代码1: #!/usr/bin/python import numpy as np arr1 = np.arange(10) print(arr1) slice_data...

Python判断值是否在list或set中的性能对比分析

本文实例对比分析了Python判断值是否在list或set中的执行性能。分享给大家供大家参考,具体如下: 判断值是否在set集合中的速度明显要比list快的多, 因为查找set用到了ha...

python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)

df是一个dataframe,列名为A B C D 具体值如下: A B C D 0 ss 小红 8 1 aa 小明 d 4 f f 6 ak 小紫 7 dataframe里的属性是不定...

Python中print和return的作用及区别解析

print只是为了向用户显示一个字符串,表示计算机内部正在发生的事情。计算机却无法使用该print出现的内容。 return是函数的返回值。该值通常是人类用户看不到的,但是计算机可以在其...

Python操作SQLite数据库过程解析

SQLite是一款轻型的数据库,是遵守ACID的关系型数据库管理系统。 不像常见的客户-服务器范例,SQLite引擎不是个程序与之通信的独立进程,而是连接到程序中成为它的一个主要部分。...