最大K个数问题的Python版解法总结

yipeiwu_com5年前Python基础

TopK问题,即寻找最大的K个数,这个问题非常常见,比如从1千万搜索记录中找出最热门的10个关键词.
方法一:
先排序,然后截取前k个数.
时间复杂度:O(n*logn)+O(k)=O(n*logn)。
这种方式比较简单粗暴,提一下便是。

方法二:最大堆

我们可以创建一个大小为K的数据容器来存储最小的K个数,然后遍历整个数组,将每个数字和容器中的最大数进行比较,如果这个数大于容器中的最大值,则继续遍历,否则用这个数字替换掉容器中的最大值。这个方法的理解也十分简单,至于容器的选择,很多人第一反应便是最大堆,但是python中最大堆如何实现呢?我们可以借助实现了最小堆的heapq库,因为在一个数组中,每个数取反,则最大数变成了最小数,整个数字的顺序发生了变化,所以可以给数组的每个数字取反,然后借助最小堆,最后返回结果的时候再取反就可以了,代码如下:

import heapq
def get_least_numbers_big_data(self, alist, k):
  max_heap = []
  length = len(alist)
  if not alist or k <= 0 or k > length:
    return
  k = k - 1
  for ele in alist:
    ele = -ele
    if len(max_heap) <= k:
      heapq.heappush(max_heap, ele)
    else:
      heapq.heappushpop(max_heap, ele)

  return map(lambda x:-x, max_heap)


if __name__ == "__main__":
  l = [1, 9, 2, 4, 7, 6, 3]
  min_k = get_least_numbers_big_data(l, 3)

方法三:quick select

quick select算法.其实就类似于快排.不同地方在于quick select每趟只需要往一个方向走.
时间复杂度:O(n).

def qselect(A,k): 
  if len(A)<k:return A 
  pivot = A[-1] 
  right = [pivot] + [x for x in A[:-1] if x>=pivot] 
  rlen = len(right) 
  if rlen==k: 
    return right 
  if rlen>k: 
    return qselect(right, k) 
  else: 
    left = [x for x in A[:-1] if x<pivot] 
    return qselect(left, k-rlen) + right 
 
for i in range(1, 10): 
  print qselect([11,8,4,1,5,2,7,9], i) 

相关文章

python学习手册中的python多态示例代码

在处理多态对象时,只需要关注它的接口即可,python中并不需要显示的编写(像Java一样)接口,在使用对象的使用先假定有该接口,如果实际并不包含,在运行中报错。复制代码 代码如下:cl...

解决pandas无法在pycharm中使用plot()方法显示图像的问题

最近用了pycharm,感觉还不错,就是pandas中Series、DataFrame的plot()方法不显示图片就给我结束了,但是我在ipython里就能画图 以前的代码是这样的...

详解Django中的过滤器

就象本章前面提到的一样,模板过滤器是在变量被显示前修改它的值的一个简单方法。 过滤器使用管道字符,如下所示: {{ name|lower }} 显示的内容是变量 {{ name...

python多进程重复加载的解决方式

flask多进程会引起重复加载, 解决方法:把耗资源的加载挪到函数里面或者类里面,就不会重复加载资源了。 测试发现,不是flask引起的,是多进程会引起重复加载python文件。 把fl...

简单讲解Python编程中namedtuple类的用法

Python的Collections模块提供了不少好用的数据容器类型,其中一个精品当属namedtuple。 namedtuple能够用来创建类似于元祖的数据类型,除了能够用索引来访问数...