Python下的Softmax回归函数的实现方法(推荐)

yipeiwu_com6年前Python基础

Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。

Softmax公式

Softmax实现方法1

import numpy as np
def softmax(x):
 """Compute softmax values for each sets of scores in x."""
 pass # TODO: Compute and return softmax(x)
 x = np.array(x)
 x = np.exp(x)
 x.astype('float32')
 if x.ndim == 1:
  sumcol = sum(x)
  for i in range(x.size):
   x[i] = x[i]/float(sumcol)
 if x.ndim > 1:
  sumcol = x.sum(axis = 0)
  for row in x:
   for i in range(row.size):
    row[i] = row[i]/float(sumcol[i])
 return x
#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)

其计算结果如下:

[ 0.8360188 0.11314284 0.05083836]

Softmax实现方法2

import numpy as np
def softmax(x):
 return np.exp(x)/np.sum(np.exp(x),axis=0)

#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)

以上这篇Python下的Softmax回归函数的实现方法(推荐)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python数据类型之列表和元组的方法实例详解

Python数据类型之列表和元组的方法实例详解

引言 我们前面的文章介绍了数字和字符串,比如我计算今天一天的开销花了多少钱我可以用数字来表示,如果是整形用 int ,如果是小数用 float ,如果你想记录某件东西花了多少钱,应该使用...

Python脚本暴力破解栅栏密码

今天遇到一个要破解的栅栏密码,先给大家介绍通用的脚本。 方法一(通用脚本): #!/usr/bin/env python # -*- coding: gbk -*- # -*-...

TensorFlow2.0:张量的合并与分割实例

** 一 tf.concat( ) 函数–合并 ** In [2]: a = tf.ones([4,35,8]) In [3]:...

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth...

Python格式化css文件的方法

本文实例讲述了Python格式化css文件的方法。分享给大家供大家参考。具体实现方法如下: import string, sys import re, StringIO TAB=4...