python中OrderedDict的使用方法详解

yipeiwu_com6年前Python基础

很多人认为python中的字典是无序的,因为它是按照hash来存储的,但是python中有个模块collections(英文,收集、集合),里面自带了一个子类

OrderedDict,实现了对字典对象中元素的排序。请看下面的实例:

import collections
print "Regular dictionary"
d={}
d['a']='A'
d['b']='B'
d['c']='C'
for k,v in d.items():
  print k,v

print "\nOrder dictionary"
d1 = collections.OrderedDict()
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'
d1['1'] = '1'
d1['2'] = '2'
for k,v in d1.items():
  print k,v


输出:

Regular dictionary
a A
c C
b B

Order dictionary
a A
b B
c C
1 1
2 2

可以看到,同样是保存了ABC等几个元素,但是使用OrderedDict会根据放入元素的先后顺序进行排序。所以输出的值是排好序的。

OrderedDict对象的字典对象,如果其顺序不同那么Python也会把他们当做是两个不同的对象,请看事例:

print 'Regular dictionary:'
d2={}
d2['a']='A'
d2['b']='B'
d2['c']='C'

d3={}
d3['c']='C'
d3['a']='A'
d3['b']='B'

print d2 == d3

print '\nOrderedDict:'
d4=collections.OrderedDict()
d4['a']='A'
d4['b']='B'
d4['c']='C'

d5=collections.OrderedDict()
d5['c']='C'
d5['a']='A'
d5['b']='B'

print d1==d2

输出:

Regular dictionary:
True

OrderedDict:
False

再看几个例子:

 dd = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
#按key排序
kd = collections.OrderedDict(sorted(dd.items(), key=lambda t: t[0]))
print kd
#按照value排序
vd = collections.OrderedDict(sorted(dd.items(),key=lambda t:t[1]))
print vd

#输出
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python机器学习理论与实战(二)决策树

python机器学习理论与实战(二)决策树

        决策树也是有监督机器学习方法。 电影《无耻混蛋》里有一幕游戏,在德军小酒馆里有几个人在玩20问题游戏...

Python DataFrame.groupby()聚合函数,分组级运算

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分panda...

利用Python中的pandas库对cdn日志进行分析详解

前言 最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量、状态码统计,TOP IP、URL、UA、Referer等。以前都是用 bash shell 实现的,但是当日志...

python之线程通过信号pyqtSignal刷新ui的方法

python之线程通过信号pyqtSignal刷新ui的方法

第一部分:UI界面设计 界面效果图如下: ui文件(可拉动控件自行创建一个button和text) <?xml version="1.0" encoding="UTF...

数据清洗--DataFrame中的空值处理方法

数据清洗是一项复杂且繁琐的工作,同时也是整个数据分析过程中最为重要的环节。 在python中空值被显示为NaN。首先,我们要构造一个包含NaN的DataFrame对象。 >&g...