python中利用队列asyncio.Queue进行通讯详解

yipeiwu_com6年前Python基础

前言

本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

asyncio.Queue与其它队列是一样的,都是先进先出,它是为协程定义的

例子如下:

import asyncio 
 
 
async def consumer(n, q): 
 print('consumer {}: starting'.format(n)) 
 while True: 
  print('consumer {}: waiting for item'.format(n)) 
  item = await q.get() 
  print('consumer {}: has item {}'.format(n, item)) 
  if item is None: 
   # None is the signal to stop. 
   q.task_done() 
   break 
  else: 
   await asyncio.sleep(0.01 * item) 
   q.task_done() 
 print('consumer {}: ending'.format(n)) 
 
 
async def producer(q, num_workers): 
 print('producer: starting') 
 # Add some numbers to the queue to simulate jobs 
 for i in range(num_workers * 3): 
  await q.put(i) 
  print('producer: added task {} to the queue'.format(i)) 
 # Add None entries in the queue 
 # to signal the consumers to exit 
 print('producer: adding stop signals to the queue') 
 for i in range(num_workers): 
  await q.put(None) 
 print('producer: waiting for queue to empty') 
 await q.join() 
 print('producer: ending') 
 
 
async def main(loop, num_consumers): 
 # Create the queue with a fixed size so the producer 
 # will block until the consumers pull some items out. 
 q = asyncio.Queue(maxsize=num_consumers) 
 
 # Scheduled the consumer tasks. 
 consumers = [ 
  loop.create_task(consumer(i, q)) 
  for i in range(num_consumers) 
 ] 
 
 # Schedule the producer task. 
 prod = loop.create_task(producer(q, num_consumers)) 
 
 # Wait for all of the coroutines to finish. 
 await asyncio.wait(consumers + [prod]) 
 
 
event_loop = asyncio.get_event_loop() 
try: 
 event_loop.run_until_complete(main(event_loop, 2)) 
finally: 
 event_loop.close() 

输出如下:

consumer 0: starting
consumer 0: waiting for item
consumer 1: starting
consumer 1: waiting for item
producer: starting
producer: added task 0 to the queue
producer: added task 1 to the queue
consumer 0: has item 0
consumer 1: has item 1
producer: added task 2 to the queue
producer: added task 3 to the queue
consumer 0: waiting for item
consumer 0: has item 2
producer: added task 4 to the queue
consumer 1: waiting for item
consumer 1: has item 3
producer: added task 5 to the queue
producer: adding stop signals to the queue
consumer 0: waiting for item
consumer 0: has item 4
consumer 1: waiting for item
consumer 1: has item 5
producer: waiting for queue to empty
consumer 0: waiting for item
consumer 0: has item None
consumer 0: ending
consumer 1: waiting for item
consumer 1: has item None
consumer 1: ending
producer: ending

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

python按比例随机切分数据的实现

在机器学习或者深度学习中,我们常常碰到一个问题是数据集的切分。比如在一个比赛中,举办方给我们的只是一个带标注的训练集和不带标注的测试集。其中训练集是用于训练,而测试集用于已训练模型上跑出...

Python实现猜数字小游戏

Python初学者小游戏:猜数字 游戏逻辑:电脑随机生成一个数字,然后玩家猜数字,电脑提示猜的数字大了还是小了,供玩家缩小数字范围,达到既定次数后,玩家失败。若在次数内猜对,玩家获胜。...

Python编程中运用闭包时所需要注意的一些地方

写下这篇博客,起源于Tornado邮件群组的这个问题how to use outer variable in inner method,这里面老外的回答很有参考价值,关键点基本都说到了。...

Python操作redis实例小结【String、Hash、List、Set等】

本文实例总结了Python操作redis方法。分享给大家供大家参考,具体如下: python连接方式可参考:/post/161353.htm 这里介绍详细使用 1、String 操作 r...

TensorFlow数据输入的方法示例

TensorFlow数据输入的方法示例

读取数据(Reading data) TensorFlow输入数据的方式有四种: tf.data API:可以很容易的构建一个复杂的输入通道(pipeline)(首选数据输入方式...