python下实现二叉堆以及堆排序的示例

yipeiwu_com6年前Python基础

堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序。堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势。

堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大。小头堆则相反。

我大概讲解下建一个树形堆的算法过程:

找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点和父结点进行对比, 如果比父结点大, 与父节点交换数据。当然, 我只是大概说了下实现, 在此过程中, 还需要考虑结点不存在的情况。

看下代码:

# 构建二叉堆 
def binaryHeap(arr, lenth, m): 
 temp = arr[m] # 当前结点的值 
 while(2*m+1 < lenth): 
 lchild = 2*m+1 
 if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]: 
 lchild = lchild + 1 
 if temp < arr[lchild]: 
 arr[m] = arr[lchild] 
 else: 
 break 
 m = lchild 
 arr[m] = temp 
 
 
def heapsort(arr, length): 
 i = int(len(arr)/2) 
 while(i >= 0): 
 binaryHeap(arr, len(arr), i) 
 i = i - 1 
 
 print("二叉堆的物理顺序为:") 
 print(arr) # 输出二叉堆的物理顺序 
 
 
if __name__ == '__main__': 
 arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98] 
 
 heapsort(arr, len(arr))

堆排序过程就是依次将最后的结点与首个节点进行对比交换:

# 构建二叉堆
def binaryHeap(arr, lenth, m):
  temp = arr[m] # 当前结点的值
  while(2*m+1 < lenth):
    lchild = 2*m+1
    if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]:
      lchild = lchild + 1
    if temp < arr[lchild]:
      arr[m] = arr[lchild]
    else:
      break
    m = lchild
  arr[m] = temp


def heapsort(arr, length):
  i = int(len(arr)/2)
  while(i >= 0):
    binaryHeap(arr, len(arr), i)
    i = i - 1

  print("二叉堆的物理顺序为:")
  print(arr) # 输出二叉堆的物理顺序

  i = length-1
  while(i > 0):
    arr[i], arr[0] = arr[0], arr[i] # 变量交换
    binaryHeap(arr, i, 0)
    i = i - 1560


def pop(arr):
  first = arr.pop(0)
  return first


if __name__ == '__main__':
  arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98]

  heapsort(arr, len(arr))

  print("堆排序后的物理顺序")
  print(arr) # 输出经过堆排序之后的物理顺序

  data = pop(arr)
  print(data)

  print(arr)

python封装了一个堆模块, 我们使用该模块可以很高效的实现一个优先队列

import heapq


class Item:
  def __init__(self, name):
    self.name = name

  def __repr__(self):
    return 'Item({!r})'.format(self.name)


class PriorityQueue:
  def __init__(self):
    self._queue = []
    self._index = 0

  def push(self, item, priority):
    heapq.heappush(self._queue, (-priority, self._index, item)) # 存入一个三元组
    self._index += 1

  def pop(self):
    return heapq.heappop(self._queue)[-1] # 逆序输出


if __name__ == '__main__':
  p = PriorityQueue()
  p.push(Item('foo'), 1)
  p.push(Item('bar'), 5)
  p.push(Item('spam'), 4)
  p.push(Item('grok'), 1)

  print(p.pop())
  print(p.pop())

具体请看heapq官网

以上这篇python下实现二叉堆以及堆排序的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python判断一个数是否能被另一个整数整除的实例

判断一个数是否能被另一个整数整除是一个挺简单的问题,一般一个模运算就可以搞定了,懒惰的晓萌还是不想自己做,于是找到你帮他写代码,你就帮帮他吧。 输入格式 输入包括两个由空格分开的整数M...

Python中pip更新和三方插件安装说明

Python中pip更新和三方插件安装说明

一、Python安装: 最新Python版本的下载和安装可以参考我的这篇博客,里面有步骤说明和注意事项。 二、手动更新pip:在安装第三方插件时如果提示pip版本需更新,可以这样做: 1...

Django如何实现网站注册用户邮箱验证功能

Django如何实现网站注册用户邮箱验证功能

我们在很多网站上都可以看到用户注册使用电子邮件激活或启用的方式。也就是说,用户在注册后填写正确的电子邮件地址,接着网站会发送一封启用电子邮件到用户设置的电子邮件的邮箱中,并在邮件中提供一...

Python设计模式之观察者模式实例

关于设计模式中的观察者模式,定义如下(维基百科): 觀察者模式(有時又被稱為發布/訂閱模式)是軟體設計模式的一種。在此種模式中,一個目標物件管理所有相依於它的觀察者物件,並且在它本身的狀...

python访问类中docstring注释的实现方法

本文实例讲述了python访问类中docstring注释的实现方法。分享给大家供大家参考。具体分析如下: python的类注释是可以通过代码访问的,这样非常利于书写说明文档 clas...