Python数据可视化正态分布简单分析及实现代码

yipeiwu_com6年前Python基础

Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。

正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为

N(μ,σ^2)

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。其概率密度函数为:

我们通常所说的标准正态分布是的正态分布:

概率密度函数

代码实现:

 # Python实现正态分布
 # 绘制正态分布概率密度函数
 u = 0 # 均值μ
 u01 = -2
 sig = math.sqrt(0.2) # 标准差δ
 sig01 = math.sqrt(1)
 sig02 = math.sqrt(5)
 sig_u01 = math.sqrt(0.5)
 x = np.linspace(u - 3*sig, u + 3*sig, 50)
 x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
 x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
 x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
 y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
 y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
 y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
 y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
 plt.plot(x, y_sig, "r-", linewidth=2)
 plt.plot(x_01, y_sig01, "g-", linewidth=2)
 plt.plot(x_02, y_sig02, "b-", linewidth=2)
 plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
 # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
 plt.grid(True)
 plt.show()

总结

以上就是本文关于Python数据可视化正态分布简单分析及实现代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他Python算法相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Pytorch中Tensor与各种图像格式的相互转化详解

前言 在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像处理库读取出来的图片格...

python实现杨辉三角思路

程序输出需要实现如下效果: [1] [1,1] [1,2,1] [1,3,3,1] ...... 方法:迭代,生成器 def triangles() L = [1] while...

详解Python map函数及Python map()函数的用法

详解Python map函数及Python map()函数的用法

python map函数 map()函数 map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到...

Python入门篇之文件

Python入门篇之文件

文件处理的函数和方法 使用Open()函数可打开文件,语法格式如下: 复制代码 代码如下: file_handler = open(filename,[,mode[,bufsize]]...

pytorch中的embedding词向量的使用方法

Embedding 词嵌入在 pytorch 中非常简单,只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,其实词嵌入就...