numpy自动生成数组详解

yipeiwu_com6年前Python基础

1 np.arange(),类似于range,通过指定开始值,终值和步长来创建表示等差数列的一维数组,注意该函数和range一样结果不包含终值。

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(0,1,0.1)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>>

2 np.linspace()函数,与上面np.arange不同的是,该函数第三个参数指定的是元素个数,它表示给定起始值和终点值以及元素个数,生成一个一维的等差数列。含有参数endpoint布尔值,默认为True表示包含终值,设定为False表示不包含终值。

>>> np.linspace(0,1,10)
array([ 0.    , 0.11111111, 0.22222222, 0.33333333, 0.44444444,
    0.55555556, 0.66666667, 0.77777778, 0.88888889, 1.    ])
>>> np.linspace(0,1,10,endpoint = False)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

3 np.logspace,该函数与np.linspace类似,不过它生成的数组是等比数列,基数默认为10

>>> np.logspace(0,4,5)
array([ 1.00000000e+00,  1.00000000e+01,  1.00000000e+02,
     1.00000000e+03,  1.00000000e+04])

但是基数也可以改变,例如将基数base = 2,如下:

>>> np.logspace(0,3,5,base = 2)
array([ 1. , 1.68179283, 2.82842712, 4.75682846, 8. ])

上面表示,起点为2^0 = 1,终点为2^3 = 8,一共按照等比数列生成5个点,这样公比q = 2^(3/4)

4. np.zeros(),np.ones(),np.empty()可以创建指定的形状和类型数组,其中np.enpty()只分配数组所使用的内存,不对数据初始化起作用。

>>> np.empty((2,3),np.int32)
array([[ 8078112, 37431728, 8078112],
    [47828800, 47828712,    10]])

注意上面创建的2*3的数组并没有被初始化。

>>> np.ones(4)
array([ 1., 1., 1., 1.])
>>> np.ones((2,3))
array([[ 1., 1., 1.],
    [ 1., 1., 1.]])
>>> np.ones(4,dtype = np.bool)
array([ True, True, True, True], dtype=bool)
>>> np.zeros(4,dtype = np.bool)
array([False, False, False, False], dtype=bool)
>>> np.zeros(4)
array([ 0., 0., 0., 0.])

np.full()函数可以生成初始化为指定值的数组

>> np.full(4,np.pi)
array([ 3.14159265, 3.14159265, 3.14159265, 3.14159265])
>>> np.full((2,3),np.pi)
array([[ 3.14159265, 3.14159265, 3.14159265],
    [ 3.14159265, 3.14159265, 3.14159265]])

此外np.zeros_like(),np.ones_like()等函数创建于参数形状相同的数组即np.zeros_like(a)与np.zeros(a.shape,dtype = a.type)相同

>>> a = np.arange(10).reshape(2,5)
>>> np.zeros_like(a)
array([[0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])

5 np.fromfunction(),它可以从指定的函数中生成数组,第一个参数是函数名称,第二个参数是数组形状。 

>>> np.fromfunction(lambda a,b:a == b,(3,3))
array([[ True, False, False],
    [False, True, False],
    [False, False, True]], dtype=bool)
>>> np.fromfunction(lambda i:i%7 +1,(10,))
array([ 1., 2., 3., 4., 5., 6., 7., 1., 2., 3.])

总结

以上就是本文关于numpy自动生成数组详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python RabbitMQ消息队列实现rpc

Python RabbitMQ消息队列实现rpc

上个项目中用到了ActiveMQ,只是简单应用,安装完成后直接是用就可以了。由于新项目中一些硬件的限制,需要把消息队列换成RabbitMQ。 RabbitMQ中的几种模式和机制比Acti...

Python实现计算圆周率π的值到任意位的方法示例

Python实现计算圆周率π的值到任意位的方法示例

本文实例讲述了Python实现计算圆周率π的值到任意位的方法。分享给大家供大家参考,具体如下: 一、需求分析 输入想要计算到小数点后的位数,计算圆周率π的值。 二、算法:马青公式 π/...

使用python 写一个静态服务(实战)

使用python 写一个静态服务(实战)

师父布置的任务,让我写一个服务练练手,搞清楚socket的原理和过程后跑了一个小demo,很有成就感,代码内容也比较清晰易懂,很有教育启发意义。 代码 # coding:utf-8...

对Python闭包与延迟绑定的方法详解

Python闭包可能会在面试或者是工作中经常碰到,而提到Python的延迟绑定,肯定就离不开闭包的理解,今天总结下 关于闭包的概念以及一个延迟绑定的面试题。 Python闭包 1、什么是...

python微信跳一跳系列之自动计算跳一跳距离

python微信跳一跳系列之自动计算跳一跳距离

到现在为止,我们通过前面几篇博文的描述和分析,已经可以自动实现棋子、棋盘位置的准确判断,计算一下两个中心点之间的距离,并绘制在图形上,效果如下。 效果 图中的棋子定位采用HSV颜色识别...