Python编程实现的简单神经网络算法示例

yipeiwu_com6年前Python基础

本文实例讲述了Python编程实现的简单神经网络算法。分享给大家供大家参考,具体如下:

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "【听图阁-专注于Python设计】测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

迭代次数为1000时,预测结果为:

迭代次数为10000,预测结果为:

迭代次数为100000,预测结果为:

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "【听图阁-专注于Python设计】测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python数据处理实战(必看篇)

python数据处理实战(必看篇)

一、运行环境 1、python版本 2.7.13 博客代码均是这个版本 2、系统环境:win7 64位系统 二、需求 对杂乱文本数据进行处理 部分数据截图如下,第一个字段是原字段,后面3...

Python OpenCV 使用滑动条来调整函数参数的方法

Python OpenCV 使用滑动条来调整函数参数的方法

引言 在观察OpenCV中某个函数在不同参数的情况下,所得到的效果的时候,我之前是改一次参数运行一次,这样做起来操作麻烦,效率低下。为了更便捷的观察参数变化时带来的处理效果改变 可以使用...

Python实现基于POS算法的区块链

Python实现基于POS算法的区块链

区块链中的共识算法 在比特币公链架构解析中,就曾提到过为了实现去中介化的设计,比特币设计了一套共识协议,并通过此协议来保证系统的稳定性和防攻击性。 并且我们知道,截止目前使用最广泛,...

详解一种用django_cache实现分布式锁的方式

问题背景 在项目开发过程中,我遇到一个需求:对于某条记录,一个用户对它进行操作时会持续比较久,希望在一个用户的操作期间,不允许有另一个用户操作它,否容易会出现混乱。 在与同事们讨论后,想...

python基于ID3思想的决策树

这是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树,供大家参考,具体内容如下 # coding=utf-8 import operator from math imp...