tensorflow建立一个简单的神经网络的方法

yipeiwu_com6年前Python基础

本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。

如何添加一层网络

代码如下:

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。

创建一些数据

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source] 
Return evenly spaced numbers over a specified interval. 
Returns num evenly spaced samples, calculated over the interval [start, stop]. 

noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。

numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。

添加占位符,用作输入

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

添加隐藏层和输出层

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

计算误差,并用梯度下降使得误差最小

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

完整代码如下:

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
           reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# important step
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0])
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
    plt.pause(0.1)

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow中tf.slice和tf.gather切片函数的使用

tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集 tf.gather(params, indices, valida...

Python如何应用cx_Oracle获取oracle中的clob字段问题

最近在用Python编写连接数据库获取记录的脚本,其中用到了cx_Oracle模块。它的语法主要如下: cx_Oracle.connect('username','pwd','IP/...

Python实现最大子序和的方法示例

Python实现最大子序和的方法示例

描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大。 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,...

使用Python正则表达式操作文本数据的方法

什么是正则表达式 正则表达式,是简单地字符的序列,可指定特定的搜索模式。正则表达式已存在很长一段时间,并且它本身就是计算机科学的一个领域。 在 Python中,使用Python的内置r...

python读取注册表中值的方法

在Python的标准库中,_winreg.pyd可以操作Windows的注册表,另外第三方的win32库封装了大量的Windows API,使用起来也很方便。不过这里介绍的是使用_win...