tensorflow构建BP神经网络的方法

yipeiwu_com6年前Python基础

之前的一篇博客专门介绍了神经网络的搭建,是在python环境下基于numpy搭建的,之前的numpy版两层神经网络,不能支持增加神经网络的层数。最近看了一个介绍tensorflow的视频,介绍了关于tensorflow的构建神经网络的方法,特此记录。

tensorflow的构建封装的更加完善,可以任意加入中间层,只要注意好维度即可,不过numpy版的神经网络代码经过适当地改动也可以做到这一点,这里最重要的思想就是层的模型的分离。

import tensorflow as tf  
import numpy as np  
 
def addLayer(inputData,inSize,outSize,activity_function = None): 
  Weights = tf.Variable(tf.random_normal([inSize,outSize]))  
  basis = tf.Variable(tf.zeros([1,outSize])+0.1)  
  weights_plus_b = tf.matmul(inputData,Weights)+basis 
  if activity_function is None: 
    ans = weights_plus_b 
  else: 
    ans = activity_function(weights_plus_b) 
  return ans 
 
 
x_data = np.linspace(-1,1,300)[:,np.newaxis] # 转为列向量 
noise = np.random.normal(0,0.05,x_data.shape) 
y_data = np.square(x_data)+0.5+noise 
 
 
xs = tf.placeholder(tf.float32,[None,1]) # 样本数未知,特征数为1,占位符最后要以字典形式在运行中填入 
ys = tf.placeholder(tf.float32,[None,1]) 
 
l1 = addLayer(xs,1,10,activity_function=tf.nn.relu) # relu是激励函数的一种 
l2 = addLayer(l1,10,1,activity_function=None) 
loss = tf.reduce_mean(tf.reduce_sum(tf.square((ys-l2)),reduction_indices = [1]))#需要向相加索引号,redeuc执行跨纬度操作 
 
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 选择梯度下降法 
 
init = tf.initialize_all_variables() 
sess = tf.Session() 
sess.run(init) 
 
for i in range(10000): 
  sess.run(train,feed_dict={xs:x_data,ys:y_data}) 
  if i%50 == 0: 
    print sess.run(loss,feed_dict={xs:x_data,ys:y_data}) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用python删除nginx缓存文件示例(python文件操作)

调用时输入参数如:  www.jb51.net/表示删除www.jb51.net首页的缓存, www.jb51.net/test.php就表示删除/test.php的缓存复制代...

python 并发编程 阻塞IO模型原理解析

python 并发编程 阻塞IO模型原理解析

阻塞IO(blocking IO) 在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样: 当用户进程调用了recvfrom这个系统调用,k...

Python中Numpy ndarray的使用详解

本文主讲Python中Numpy数组的类型、全0全1数组的生成、随机数组、数组操作、矩阵的简单运算、矩阵的数学运算。 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更...

Python程序设计入门(4)模块和包

Python语言功能非常强大,除了类之外,还有模块和包的概念,这有点像perl,此处简单说说包和模块。 一、Python中的模块 模块——其实就是我们说的库(lib)的概念,不过它不仅只...

Pytorch之finetune使用详解

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤: 1.固定参数 for name, child in model.named...