python实现朴素贝叶斯分类器

yipeiwu_com6年前Python基础

本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量)

以及每个类下每个特征的概率(代码中是pNum变量)。

写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量。

有什么错误有人发现麻烦提出,谢谢。

[python] view plain copy
# -*- coding:utf-8 -*- 
from numpy import * 
from sklearn import datasets 
import numpy as np 
 
class NaiveBayesClassifier(object): 
 
  def __init__(self): 
    self.dataMat = list() 
    self.labelMat = list() 
    self.pLabel = {} 
    self.pNum = {} 
 
  def loadDataSet(self): 
    iris = datasets.load_iris() 
    self.dataMat = iris.data 
    self.labelMat = iris.target 
    labelSet = set(iris.target) 
    labelList = [i for i in labelSet] 
    labelNum = len(labelList) 
    for i in range(labelNum): 
      self.pLabel.setdefault(labelList[i]) 
      self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat)) 
 
  def seperateByClass(self): 
    seperated = {} 
    for i in range(len(self.dataMat)): 
      vector = self.dataMat[i] 
      if self.labelMat[i] not in seperated: 
        seperated[self.labelMat[i]] = [] 
      seperated[self.labelMat[i]].append(vector) 
    return seperated 
 
  # 通过numpy array二维数组来获取每一维每种数的概率 
  def getProbByArray(self, data): 
    prob = {} 
    for i in range(len(data[0])): 
      if i not in prob: 
        prob[i] = {} 
      dataSetList = list(set(data[:, i])) 
      for j in dataSetList: 
        if j not in prob[i]: 
          prob[i][j] = 0 
        prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i])) 
    prob[0] = [1 / float(len(data[:,0]))] # 防止feature不存在的情况 
    return prob 
 
  def train(self): 
    featureNum = len(self.dataMat[0]) 
    seperated = self.seperateByClass() 
    t_pNum = {} # 存储每个类别下每个特征每种情况出现的概率 
    for label, data in seperated.iteritems(): 
      if label not in t_pNum: 
        t_pNum[label] = {} 
      t_pNum[label] = self.getProbByArray(np.array(data)) 
    self.pNum = t_pNum 
 
  def classify(self, data): 
    label = 0 
    pTest = np.ones(3) 
    for i in self.pLabel: 
      for j in self.pNum[i]: 
        if data[j] not in self.pNum[i][j]: 
          pTest[i] *= self.pNum[i][0][0] 
        else: 
          pTest[i] *= self.pNum[i][j][data[j]] 
    pMax = np.max(pTest) 
    ind = np.where(pTest == pMax) 
    return ind[0][0] 
 
  def test(self): 
    self.loadDataSet() 
    self.train() 
    pred = [] 
    right = 0 
    for d in self.dataMat: 
      pred.append(self.classify(d)) 
    for i in range(len(self.labelMat)): 
      if pred[i] == self.labelMat[i]: 
        right += 1 
    print right / float(len(self.labelMat)) 
 
if __name__ == '__main__': 
  NB = NaiveBayesClassifier() 
  NB.test() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python新手实现2048小游戏

Python新手实现2048小游戏

接触 Python 不久,看到很多人写2048,自己也捣鼓了一个,主要是熟悉Python语法。 程序使用Python3 写的,代码150行左右,基于控制台,方向键使用输入字符模拟。 演示...

python中将两组数据放在一起按照某一固定顺序shuffle的实例

有的时候需要将两组数据,比如特征和标签放在一起随机打乱, 但是又想记录这种打乱的顺序,那么该怎么做呢?下面是一个很好的方法: b = [1, 2,3, 4, 5,6 , 7,8 ,9...

python使用opencv实现马赛克效果示例

python使用opencv实现马赛克效果示例

本文实例讲述了python使用opencv实现马赛克效果。分享给大家供大家参考,具体如下: 最近要实现opencv视频打马赛克,在网上找了一下基本是C++的实现,好在原理一样,下面给出p...

使用Python下的XSLT API进行web开发的简单教程

使用Python下的XSLT API进行web开发的简单教程

Kafka 样式的 soap 端点 Christopher Dix 所开发的“Kafka — XSL SOAP 工具箱”(请参阅 参考资料)是一种用于构造 SOAP 端点的 XSLT 框...

Python递归函数定义与用法示例

本文实例讲述了Python递归函数定义与用法。分享给大家供大家参考,具体如下: 递归函数 在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。 举个例子,...