Numpy掩码式数组详解

yipeiwu_com6年前Python基础

数据很大形况下是凌乱的,并且含有空白的或者无法处理的字符,掩码式数组可以很好的忽略残缺的或者是无效的数据点。掩码式数组由一个正常数组与一个布尔式数组组成,若布尔数组中为Ture,则表示正常数组中对应下标的值无效,反之False表示对应正常数组的值有效。

创建方法为,首先创建一个布尔型数组,然后通过numpy.ma子程序包提供的函数来创建掩码式数组,掩码式数组提供了各种所需函数。

创建实例如下:

import numpy as np
origin = np.arange(16).reshape(4,4)  #生成一个4×4的矩阵
np.random.shuffle(origin)     #随机打乱矩阵元素
random_mask = np.random.randint(0,2,size=origin.shape)#生成随机[0,2)的整数的4×4矩阵
mask_array = np.ma.array(origin,mask=random_mask)#生成掩码式矩阵
print(mask_array)

结果如下:

[[12 13 -- 15]
 [8 9 10 --]
 [-- -- -- 3]
 [-- 5 6 --]]

用于:

1.对负数取对数

import numpy as np
triples = np.arange(0,10,3)#每隔3取0到10中的整数,(0,3,6,9)
signs = np.ones(10)#(1,1,1,1,1,1,1,1,1)
signs[triples] = -1#(-1,1,1,-1,1,1,-1,1,1,-1)
values = signs * 77#(-77,77,77,-77,77,77,-77,77,77,-77)
ma_log = np.ma.log(values)#掩码式取对数
print(ma_log)

结果为:

[-- 4.343805421853684 4.343805421853684 -- 4.343805421853684
 4.343805421853684 -- 4.343805421853684 4.343805421853684 --]

2.忽略极值

import numpy as np
inside = np.ma.masked_outside(array,min,max)

以上这篇Numpy掩码式数组详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python多线程threading.Lock锁用法实例

本文实例讲述了python多线程threading.Lock锁的用法实例,分享给大家供大家参考。具体分析如下: python的锁可以独立提取出来 复制代码 代码如下:mutex = th...

python操作excel文件并输出txt文件的实例

如下所示: #coding=utf-8 import os import xlrd #excel文件放置在当前路径 path='model.xls' #打开文件 data=xlrd....

python xml.etree.ElementTree遍历xml所有节点实例详解

python xml.etree.ElementTree遍历xml所有节点 XML文件内容: <students> <student name='刘备' s...

深入学习python多线程与GIL

python 多线程效率 在一台8核的CentOS上,用python 2.7.6程序执行一段CPU密集型的程序。 import time def fun(n):#CPU密集型的程序...

Python数据类型学习笔记

Python数据类型学习笔记

带你走进数据类型 一:整数、浮点数 Python中整数和浮点数的定义以及运算和C++都是一样的,我在这里就不需多说了,我就说明一点:Python相对于C/C++而言,定义整数没有int...