对Python中gensim库word2vec的使用详解

yipeiwu_com6年前Python基础

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname) 

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32) 

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。

以上这篇对Python中gensim库word2vec的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Python实现定时自动给微信好友发送天气预报

基于Python实现定时自动给微信好友发送天气预报

效果图 from wxpyimport * import requests from datetimeimport datetime import time from apsche...

详解Python中表达式i += x与i = i + x是否等价

详解Python中表达式i += x与i = i + x是否等价

前言 最近看到一个题目,看似很简单,其实里面有很深的意义,题目是Python 表达式 i += x 与 i = i + x 等价吗?如果你的回答是yes,那么恭喜你正确了50%,为什么说...

关于Pytorch的MNIST数据集的预处理详解

关于Pytorch的MNIST数据集的预处理详解

关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等。 操作系统...

从训练好的tensorflow模型中打印训练变量实例

从训练好的tensorflow模型中打印训练变量实例

从tensorflow 训练后保存的模型中打印训变量:使用tf.train.NewCheckpointReader() import tensorflow as tf reader...

python实现一行输入多个值和一行输出多个值的例子

python实现一行输入多个值和一行输出多个值的例子

注:以下内容在python3中操作 一. 一行输入多个值 a,b = input().split() #此时得到的a和b的类型均为字符串,以空格为分隔符 a,b = input()....