Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法

yipeiwu_com6年前Python基础

前言

跳台阶、变态跳台阶、矩形覆盖其实都和斐波那契数列是一类问题,文中通过示例代码介绍的非常详细,下面话不多说了,来一起看看详细的介绍吧。

跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

初始值很容易得到,当n > 2时,跳上n级台阶最后一步无外乎两种情况,从第n-1级跳一级跳上来,或是从第n-2级跳2级跳上来,因此很容易得到如下递归公式。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

变态跳台阶

问题描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

相比上一个跳台阶,这次可以从任意台阶跳上第n级台阶,也可以直接跳上第n级。因此其递归公式为各个台阶之和再加上直接跳上去的一种情况。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)+ … + F(2)+ F(1)+ 1 = 2 **(n-1)

代码:

def jump_floor(number):
 if number == 0:
  return 0
 return 2**(number-1)

矩形覆盖

问题描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:

仔细分析这个问题实际上就是普通的跳台阶问题。

F(0)= 0
F(1)= 1
F(2)= 2
F(n)= F(n-1)+ F(n-2)(n > 2)

代码:

def jump_floor(number):
 if number <= 2:
  return number
 prev, curr = 1, 2
 for _ in range(3, number+1):
  prev, curr = curr, prev+curr
 return curr

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

浅谈python numpy中nonzero()的用法

nonzero函数返回非零元素的目录。 返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值。 import numpy as np A = np.mat...

&#8203;如何愉快地迁移到 Python 3

引言 如今 Python 成为机器学习和大量使用数据操作的科学领域的主流语言; 它拥有各种深度学习框架和完善的数据处理和可视化工具。但是,Python 生态系统在 Python2 和 P...

Python简单实现socket信息发送与监听功能示例

本文实例讲述了Python简单实现socket信息发送与监听功能。分享给大家供大家参考,具体如下: 最近在研究boost C++库,用于工作中处理大规模高并发TCP连接数据响应,想测试,...

基于pandas数据样本行列选取的方法

注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ------...

Python中用startswith()函数判断字符串开头的教程

函数:startswith() 作用:判断字符串是否以指定字符或子字符串开头 一、函数说明 语法:string.startswith(str, beg=0,end=len(string)...