Python装饰器的执行过程实例分析

yipeiwu_com6年前Python基础

本文实例分析了Python装饰器的执行过程。分享给大家供大家参考,具体如下:

今天看到一句话:装饰器其实就是对闭包的使用,仔细想想,其实就是这回事,今天又看了下闭包,基本上算是弄明白了闭包的执行过程了。其实加上几句话以后就可以很容易的发现,思路给读者,最好自己总结一下,有助于理解。通过代码来说吧。

第一种,装饰器本身不传参数,相对来说过程相对简单的

#!/usr/bin/python
#coding: utf-8
# 装饰器其实就是对闭包的使用
def dec(fun):
  print("call dec")
  def in_dec():
    print("call in_dec")
    fun()
  # 必须加上返回语句,不然的话会默认返回None
  return in_dec
@dec
def fun():
  print("call fun")
# 注意上面的返回语句加上还有不加上的时候这一句执行的区别
print(type(fun))
fun()
'''
通过观察输出结果可以知道函数执行的过程
call dec
<type 'function'>
call in_dec
call fun
观察这几组数据以后,其实很容易发现,先执行装饰器,执行过装饰器以后,代码继续执行最后的print和fun()语句,
但是此时的fun函数其实是指向in_dec的,并不是@下面的fun函数,所以接下来执行的是in_dec,在in_dec中有一个fun()语句,
遇到这个以后才是执行@后面的fun()函数的。
'''

第二种,装饰器本身传参数,个人认为相对复杂,这个过程最好自己总结,有问题大家一块探讨

#!/usr/bin/python
#coding: utf-8
import time, functools
def performance(unit):
  print("call performance")
  def log_decrator(f):
    print("call log_decrator")
    @functools.wraps(f)
    def wrapper(*arg, **kw):
      print("call wrapper")
      t1 = time.time()
      t = f(*arg, **kw)
      t2 = time.time()
      tt = (t2 - t1) * 1000 if unit == "ms" else (t2 - t1)
      print 'call %s() in %f %s' % (f.__name__, tt, unit)
      return t
    return wrapper
  return log_decrator
@performance("ms")
def factorial(n):
  print("call factorial")
  return reduce(lambda x, y: x * y, range(1, 1 + n))
print(type(factorial))
#print(factorial.__name__)
print(factorial(10))
'''接下来的是输出结果,通过结果其实很容易发现执行的过程
call performance
call log_decrator 通过观察前两组的输出结果可以知道,先执行装饰器
<type 'function'>
call wrapper
call factorial
call factorial() in 0.000000 ms
3628800
'''

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python入门篇之函数

Pythond 的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后才存在。 函数是通过赋值传递的,参数通过赋值传递给函数 def语...

使用python编写简单的小程序编译成exe跑在win10上

使用python编写简单的小程序编译成exe跑在win10上

每天的工作其实很无聊,早知道应该去IT公司闯荡的。最近的工作内容是每逢一个整点,从早7点到晚11点,去查一次客流数据,整理到表格中,上交给素未蒙面的上线,由他呈交领导查阅。   人的精力...

简单介绍Python中的RSS处理

RSS 是一个可用多种扩展来表示的缩写:“RDF 站点摘要(RDF Site Summary)”、“真正简单的辛迪加(Really Simple Syndication)”、“丰富站点摘...

Python多进程入门、分布式进程数据共享实例详解

本文实例讲述了Python多进程入门、分布式进程数据共享。分享给大家供大家参考,具体如下: python多进程入门 https://docs.python.org/3/library/m...

基于python中theano库的线性回归

theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方 代码块...