使用python进行文本预处理和提取特征的实例

yipeiwu_com6年前Python基础

如下所示:

<strong><span style="font-size:14px;">文本过滤</span></strong> 
result = re.sub(r'[^\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", content)#只保留中文和标点 

result = re.sub(r'[^\u4e00-\u9fa5]', "",content)#只保留中文 
result = re.sub(r'[^\0-9\.\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", content)#只保留中文和标点和数字 
result = re.sub(r'[^\u4e00-\u9fa5,A-Za-z0-9]', "",content)#只保留中文、英文和数字 

文本去除两个以上空格

content=re.sub(r'\s{2,}', '', content)

bas4编码变成中文

def bas4_decode(bas4_content): 
 decodestr= base64.b64decode(bas4_content) 
 result = re.sub(r'[^\0-9\.\u4e00-\u9fa5,。?!,、;:“ ”‘ '( )《 》〈 〉]', "", decodestr.decode())#只保留中文和标点和数字 
 return result 

文本去停用词

def text_to_wordlist(text): 
 result = re.sub(r'[^\u4e00-\u9fa5]', "",text) 
 f1_seg_list = jieba.cut(result)#需要添加一个词典,来弥补结巴分词中没有的词语,从而保证更高的正确率 
 f_stop = codecs.open(".\stopword.txt","r","utf-8") 
 try: 
  f_stop_text = f_stop.read() 
 finally: 
  f_stop.close() 
 f_stop_seg_list = f_stop_text.split() 
 
 test_words = [] 
 
 for myword in f1_seg_list: 
  if myword not in f_stop_seg_list: 
   test_words.append(myword) 
    
 return test_words 

文本特征提取

import jieba 
import jieba.analyse 
import numpy as np 
#import json 
import re

def Textrank(content):
 result = re.sub(r'[^\u4e00-\u9fa5]', "",content)
 seg = jieba.cut(result) 
 jieba.analyse.set_stop_words('stopword.txt')
 keyList=jieba.analyse.textrank('|'.join(seg), topK=10, withWeight=False) 
 return keyList

def TF_IDF(content):
 result = re.sub(r'[^\u4e00-\u9fa5]', "",content)
 seg = jieba.cut(result) 
 jieba.analyse.set_stop_words('stopword.txt')
 keyWord = jieba.analyse.extract_tags( 
  '|'.join(seg), topK=10, withWeight=False, allowPOS=())#关键词提取,在这里对jieba的tfidf.py进行了修改 
 return keyWord

以上这篇使用python进行文本预处理和提取特征的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现人脸识别经典算法(一) 特征脸法

近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级。 操作环境:python2.7 第三方...

基于多进程中APScheduler重复运行的解决方法

问题 在一个python web应用中需要定时执行一些任务,所以用了APScheduler这个库。又因为是用flask这个web框架,所以用了flask-apscheduler这个插件(...

使用OpenCV实现仿射变换—缩放功能

使用OpenCV实现仿射变换—缩放功能

前面介绍怎么样实现平移的功能,接着下来演示缩放功能。比如在一个文档里插入一个图片,发现这个图片占用太大的面积了,要把它缩小,才放得下,与文字的比例才合适。这样的需求,就需要使用仿射变换的...

pytorch 归一化与反归一化实例

ToTensor中就有转到0-1之间了。 # -*- coding:utf-8 -*- import time import torch from torchvisi...

tensorflow学习笔记之简单的神经网络训练和测试

tensorflow学习笔记之简单的神经网络训练和测试

本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下 刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,...