通过Pandas读取大文件的实例

yipeiwu_com6年前Python基础

当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取:

import pandas as pd
f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv')
reader = pd.read_csv(f, sep=',', iterator=True)
loop = True
chunkSize = 100000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 loop = False
 print("Iteration is stopped.")
df = pd.concat(chunks, ignore_index=True)
print(df)

read_csv()函数的iterator参数等于True时,表示返回一个TextParser以便逐块读取文件;

chunkSize表示文件块的大小,用于迭代;

TextParser类的get_chunk方法用于读取任意大小的文件块;

StopIteration的异常表示在循环对象穷尽所有元素时报错;

concat()函数用于将数据做轴向连接:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, Verify_integrity=False)

常用参数:

objs:Series,DataFrame或者是Panel构成的序列list;

axis:需要合并连接的轴,0是行,1是列;

join:连接的参数,inner或outer;

ignore=True表示重建索引。

以上这篇通过Pandas读取大文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用Python实现简单的相似图片搜索的教程

利用Python实现简单的相似图片搜索的教程

大概五年前吧,我那时还在为一家约会网站做开发工作。他们是早期创业公司,但他们也开始拥有了一些稳定用户量。不像其他约会网站,这家公司向来以洁身自好为主要市场形象。它不是一个供你鬼混的网站—...

python 遍历pd.Series的index和value

遍历pd.Series的index和value的方法如下,python built-in list的enumerate方法不管用 for i, v in s.items(): p...

详解Python 模拟实现生产者消费者模式的实例

详解Python 模拟实现生产者消费者模式的实例 散仙使用python3.4模拟实现的一个生产者与消费者的例子,用到的知识有线程,队列,循环等,源码如下: Python代码 impo...

深入flask之异步非堵塞实现代码示例

官方其实已经给出了方案,只不过藏的有点深,在加上网上有很多不太靠谱的帖子误导了我(当然不排除我没理解的原因哈)。所以为了让有些朋友的少走点弯路,也为给自己做个备忘。 完整代码:https...

Django JWT Token RestfulAPI用户认证详解

Django JWT Token RestfulAPI用户认证详解

一般情况下我们Django默认的用户系统是满足不了我们的需求的,那么我们会对他做一定的扩展 创建用户项目 python manage.py startapp users 添加项目a...