Pandas 合并多个Dataframe(merge,concat)的方法

yipeiwu_com6年前Python基础

在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id、age、sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的。

pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生。

下面说说merge函数怎么用:

df = pd.merge(df1, df2, how='left', on='user_id') 

用法很简单,说一下后两个参数就可以了,how=""参数表示以哪个表的key为准,上面的how="left"表示以表df1为准,而key也就是on=""的参数

how="left"就是说,保留user_id字段的全部信息,不增加也不减少,但是拼接的时候只把df2表中的与df1中user_id字段交集的部分合并上就可以了,如果df2中出现了某个user_id在df1中没有出现,就抛弃掉这个样本不作处理。

如果要进行多key合并:

df = pd.merge(df1, df2, how='left', on=['user_id','sku_id']) 

但是如果想仅进行简单的“拼接”而不是合并呢,要使用concat函数:

df = pd.concat( [df_user, dummies_sex, dummies_age, dummies_level], axis=1 ) 

这样可以保留这些表单的全部信息,参数axis=1表示列拼接,axis=0表示行拼接。

要保证背个表单的行数是相同的,并且每一行对应的key也是相同的,列拼接才变得有意义

以上这篇Pandas 合并多个Dataframe(merge,concat)的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python的re模块应用实例

本文实例讲述了python的re模块应用。是非常重要的应用技巧。分享给大家供大家参考。 具体方法如下: import re # match_object = re.match('...

python日志模块logbook使用方法

python自带了日志模块logging,可以用来记录程序运行过程中的日志信息。同时python还有logbook模块用来取代logging模块,在很多的项目中logbook模块使用也是...

Python xlrd读取excel日期类型的2种方法

有个excle表格需要做一些过滤然后写入数据库中,但是日期类型的cell取出来是个数字,于是查询了下解决的办法。 基本的代码结构 复制代码 代码如下: data = xlrd.open_...

python正则表达式匹配IP代码实例

这篇文章主要介绍了python正则表达式匹配IP代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import re re...

python实现发送邮件及附件功能

python实现发送邮件及附件功能

今天给大伙说说python发送邮件,官方的多余的话自己去百度好了,还有一大堆文档说实话不到万不得已的时候一般人都不会去看,回归主题: 本人是mac如果没有按照依赖模块的请按照下面的截图安...