解决python读取几千万行的大表内存问题

yipeiwu_com5年前Python基础

Python导数据的时候,需要在一个大表上读取很大的结果集。

如果用传统的方法,Python的内存会爆掉,传统的读取方式默认在内存里缓存下所有行然后再处理,内存容易溢出

解决的方法:

1)使用SSCursor(流式游标),避免客户端占用大量内存。(这个cursor实际上没有缓存下来任何数据,它不会读取所有所有到内存中,它的做法是从储存块中读取记录,并且一条一条返回给你。)

2)使用迭代器而不用fetchall,即省内存又能很快拿到数据。

import MySQLdb.cursors

conn = MySQLdb.connect(host='ip地址', user='用户名', passwd='密码', db='数据库名', port=3306,
   charset='utf8', cursorclass = MySQLdb.cursors.SSCursor)
cur = conn.cursor()
cur.execute("SELECT * FROM bigtable");
row = cur.fetchone()
while row is not None:
 do something
 row = cur.fetchone()

cur.close()
conn.close()

需要注意的是,

1、因为SSCursor是没有缓存的游标,结果集只要没取完,这个conn是不能再处理别的sql,包括另外生成一个cursor也不行的。

如果需要干别的,请另外再生成一个连接对象。

2、 每次读取后处理数据要快,不能超过60s,否则mysql将会断开这次连接,也可以修改 SET NET_WRITE_TIMEOUT = xx 来增加超时间隔。

以上这篇解决python读取几千万行的大表内存问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python切片操作深入详解

本文实例讲述了Python切片操作。分享给大家供大家参考,具体如下: 我们基本上都知道Python的序列对象都是可以用索引号来引用的元素的,索引号可以是正数由0开始从左向右,也可以是负数...

python PyTorch预训练示例

前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢。各种设计直接简洁,方便研究,比tensorflow的臃肿好多了。今天让我们来谈谈PyTorch的预...

浅谈python在提示符下使用open打开文件失败的原因及解决方法

浅谈python在提示符下使用open打开文件失败的原因及解决方法

题目:在提示符下使用open打开一个文件 刚开始网上看了下打开的方式,结果一直实现不了,报错是没找到这个文件,而且和我输入的文件名不一样。 错误如下: >>>ope...

python pandas 对时间序列文件处理的实例

如下所示: import pandas as pd from numpy import * import matplotlib.pylab as plt import copy d...

python实现人工智能Ai抠图功能

python实现人工智能Ai抠图功能

自己是个PS小白,没办法只能通过技术来证明自己。 话不多说,直接上代码 from removebg import RemoveBg import requests import os...