numpy matrix和array的乘和加实例

yipeiwu_com6年前Python基础

1. 对于数组array

就是对应位置的元素相乘:

X1 = np.array([[1,2], [3, 4]])
X2 = X1
print X2*X1
[[ 1 4]
 [ 9 16]]

就是对应位置的相加:

X1 = np.array([[1,2], [3, 4]])
X2 = X1
print X2+X1
[[2 4]
 [6 8]]

2. 对于矩阵matrix

就是矩阵的点乘:

X1 = np.matrix([[1,2], [3, 4]])
X2 = X1
print X2*X1
[[ 7 10]
 [15 22]]

有两种情况,第一种是X1与X2的大小一致,就是普通的矩阵相加,即对应位置相加:

X1 = np.matrix([[1,2], [3, 4]])
X2 = X1
print X2+X1
[[2 4]
 [6 8]]

第二种情况是n*1的X1 + m*1的X2(或者反过来),就会得到n*m的矩阵:

X1 = np.matrix([[1,2,3]])
X2 = np.matrix([[1,2,3,4]]).T
print X2+X1
[[2 3 4]
 [3 4 5]
 [4 5 6]
 [5 6 7]]

3. 混用情况

在numpy中存在很多的matrix和array 运算符混用的情况,程序也能通过,但这样很不好,尽量按照以上原则使用。

如果2维的array想要进行矩阵的点乘运算,可以用np.dot(X1, X2)

如果matrix想要进行对应位置的乘,可以用np.multiply(X2,X1)

以上这篇numpy matrix和array的乘和加实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python网络编程学习笔记(10):webpy框架

python网络编程学习笔记(10):webpy框架

django和webpy都是python的web开发框架。Django的主要目的是简便、快速的开发数据库驱动的网站。它强调代码复用,多个组件可以很方便的以“插件”形式服务于整个框架,Dj...

Python解释执行原理分析

本文较为详细的分析了Python解释执行的原理,对于深入理解Python可以起到一定的帮助作用。具体分析如下: 首先,这里的解释执行是相对于编译执行而言的。我们都知道,使用C/C++之类...

Python进阶_关于命名空间与作用域(详解)

写在前面 如非特别说明,下文均基于Python3 命名空间与作用于跟名字的绑定相关性很大,可以结合另一篇介绍Python名字、对象及其绑定的文章。 1. 命名空间 1.1 什么是命名空间...

python下读取公私钥做加解密实例详解

python下读取公私钥做加解密实例详解 在RSA有一种应用模式是公钥加密,私钥解密(另一种是私钥签名,公钥验签)。下面是Python下的应用举例。 假设我有一个公钥文件,rsa_pub...

python使用在线API查询IP对应的地理位置信息实例

这篇文章中的内容是来源于去年我用美国的VPS搭建博客的初始阶段,那是有很多恶意访问,我就根据access log中的源IP来进行了很多统计,同时我也将访问量最高的恶意访问的源IP拿来查询...