Python读取英文文件并记录每个单词出现次数后降序输出示例

yipeiwu_com6年前Python基础

本文实例讲述了Python读取英文文件并记录每个单词出现次数后降序输出。分享给大家供大家参考,具体如下:

对文中出现的句号,逗号和感叹号做了相应的处理

sorted排序函数用法:

按照value值降序排列:

sorted(dict.items(),key=lambda k:k[1],reverse=True)

按照value值升序排序:

sorted(dict.items(),key=lambda k:k[1],reverse=False)

或者

sorted(dict.items(),key=lambda k:k[1])

按照key值降序排列:

sorted(dict.items(),key=lambda k:k[0],reverse=True)

按照key值升序排列:

sorted(dict.items(),key=lambda k:k[0])

或者

sorted(dict.items(),key=lambda k:k[0],reverse=False)

Python示例:

# -*- coding:utf-8 -*-
#! python2
file_object=open("english.txt")
dict={}
for line in file_object:
  line=line.replace(","," ")
  line=line.replace("."," ")
  line=line.replace("!"," ")
  strs= line.split();
  for str in strs:
    if dict.has_key(str):
      dict[str]+=1
    else:
      dict[str]=1
result=sorted(dict.items(),key=lambda k:k[1],reverse=True)
print result

english.txt文件:

We are busy all day, like swarms of flies without souls, noisy, restless, unable to hear the voices of the soul. As time goes by, childhood away, we grew up, years away a lot of memories, once have also eroded the bottom of the childish innocence, we regardless of the shackles of mind, indulge in the world buckish, focus on the beneficial principle, we have lost themselves.

运行结果:

[('the', 7), ('of', 6), ('we', 3), ('have', 2), ('away', 2), ('flies', 1), ('regardless', 1), ('restless', 1), ('up', 1), ('indulge', 1), ('mind', 1), ('all', 1), ('voices', 1), ('are', 1), ('in', 1), ('We', 1), ('busy', 1), ('shackles', 1), ('also', 1), ('memories', 1), ('by', 1), ('to', 1), ('unable', 1), ('goes', 1), ('themselves', 1), ('lot', 1), ('on', 1), ('buckish', 1), ('focus', 1), ('souls', 1), ('hear', 1), ('innocence', 1), ('world', 1), ('years', 1), ('day', 1), ('noisy', 1), ('a', 1), ('eroded', 1), ('grew', 1), ('like', 1), ('lost', 1), ('swarms', 1), ('bottom', 1), ('soul', 1), ('As', 1), ('without', 1), ('principle', 1), ('beneficial', 1), ('time', 1), ('childish', 1), ('childhood', 1), ('once', 1)]

PS:这里再为大家推荐2款相关统计工具供大家参考:

在线字数统计工具:
http://tools.jb51.net/code/zishutongji

在线字符统计与编辑工具:
http://tools.jb51.net/code/char_tongji

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python 分析Nginx访问日志并保存到MySQL数据库实例

使用Python 分析Nginx access 日志,根据Nginx日志格式进行分割并存入MySQL数据库。一、Nginx access日志格式如下:复制代码 代码如下:$remote_...

python3+PyQt5实现自定义流体混合窗口部件

python3+PyQt5实现自定义流体混合窗口部件

本文通过Python3+PyQt5实现自定义部件–流体混合窗口部件。通过逻辑(窗口)坐标绘制而成。调用setWindow,所有的绘制工作都会根据逻辑坐标系发生。 #!/usr/bin...

Python Sympy计算梯度、散度和旋度的实例

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接: http://docs.sympy.org/latest/modules/vect...

Django2 连接MySQL及model测试实例分析

Django2 连接MySQL及model测试实例分析

本文实例讲述了Django2 连接MySQL及model测试。分享给大家供大家参考,具体如下: 参考:/post/176066.htm 新建个应用 manage.py startap...

Python英文文本分词(无空格)模块wordninja的使用实例

在NLP中,数据清洗与分词往往是很多工作开始的第一步,大多数工作中只有中文语料数据需要进行分词,现有的分词工具也已经有了很多了,这里就不再多介绍了。英文语料由于其本身存在空格符所以无需跟...