python numpy 显示图像阵列的实例

yipeiwu_com5年前Python基础

每次要显示图像阵列的时候,使用自带的 matplotlib 或者cv2 都要设置一大堆东西,subplot,fig等等,突然想起 可以利用numpy 的htstack() 和 vstack() 将图片对接起来组成一张新的图片。因此写了写了下面的函数。做了部分注释,一些比较绕的地方可以自行体会。

大致流程包括:

1、输入图像列表 img_list

2、show_type : 最终的显示方式,输入为行数列数 (例如 show_type=22 ,则最终显示图片为两行两列)

3、basic_shape, 图片resize的尺寸。

def image_show( img_list, show_type, basic_size=[300,500]):
 '''
  img_list contains the images that need to be stitched,
  the show_typ contains the final shape of the stitched one, ie, 12 for 1 row 2 cols.
  basic_size : all input image need to be reshaped first. 
 
 '''
 # reshap row and col number. 
 n_row, n_col = basic_size
 #print n_row,n_col
 
 # num of pixels need to be filled vertically and horizontally.
 h_filling = 10
 v_filling = 10
 
 
 # image resize. 
 resize_list=[]
 for i in img_list:
  temp_img = cv2.resize( i, ( n_col, n_row ), interpolation = cv2. INTER_CUBIC )
  resize_list.append( temp_img )
 
 # resolve the final stitched image 's shape.
 n_row_img, n_col_img = show_type/10, show_type%10
 #print n_row_img, n_col_img
 
 # the blank_img and the image need to be filled should be defined firstly.
 blank_img= np.ones([n_row,n_col])*255
 blank_img= np.array( blank_img, np.uint8 )
 v_img= np.array( np.ones([n_row,v_filling])*255, np.uint8)
 h_img= np.array( np.ones ([ h_filling, n_col_img*n_col+(n_col_img-1)*h_filling])*255, np.uint8)
 
  
 # images in the image list should be dispatched into different sub-list
 # in each sub list the images will be connected horizontally.
 recombination_list=[]
 temp_list=[]
 n_list= len(resize_list)
 for index, i in enumerate ( xrange (n_list)):
  if index!= 0 and index % n_col_img==0 :
   recombination_list.append(temp_list)
   temp_list = []
   if len(resize_list)> n_col_img:
    pass
   else:
    recombination_list.append(resize_list)
    break
  temp_list.append( resize_list.pop(0))
 if n_list== n_col_img:
  recombination_list.append(temp_list)
 #print len(temp_list)
 #print temp_list
 
 
 # stack the images horizontally.
 h_temp=[]
 for i in recombination_list:
  #print len(i)
  if len(i)==n_col_img:
   
   temp_new_i=[ [j,v_img] if index+1 != len(i) else j for index, j in enumerate (i) ]
   new_i=[ j for i in temp_new_i[:-1] for j in i ]
   new_i.append( temp_new_i[-1])
   h_temp.append(np.hstack(new_i))
  else:
   
   add_n= n_col_img - len(i)
   for k in range(add_n):
    i.append(blank_img)
    
   temp_new_i=[ [j,v_img] if index+1 != len(i) else j for index, j in enumerate (i) ]
   new_i=[ j for i in temp_new_i[:-1] for j in i ]
   new_i.append( temp_new_i[-1])
   
   h_temp.append(np.hstack(new_i))
   
   
 #print len(h_temp)
 #print h_temp
   
 temp_full_img= [ [j, h_img ] if index+1 != len(h_temp) else j for index, j in enumerate(h_temp) ]
 if len(temp_full_img) > 2:
  full_img= [ j for i in temp_full_img[:-1] for j in i ]
  full_img.append(temp_full_img[-1])
 else:
  full_img= [ j for i in temp_full_img for j in i ]
  #full_img.append(temp_full_img[-1])
  
 
 
 if len(full_img)>1:
  return np.vstack( full_img) 
 else:
  return full_img

最终输入情况和结果如下图:

第一组结果图:自行看输入

第二组结果图。

以上这篇python numpy 显示图像阵列的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python可视化篇之流式数据监控的实现

python可视化篇之流式数据监控的实现

preface 流式数据的监控,以下主要是从算法的呈现出发,提供一种python的实现思路 其中: 1.python是2.X版本 2.提供两种实现思路,一是基于matplotli...

python在windows下创建隐藏窗口子进程的方法

本文实例讲述了python在windows下创建隐藏窗口子进程的方法。分享给大家供大家参考。具体实现方法如下: import subprocess IS_WIN32 = 'win32...

django-rest-framework解析请求参数过程详解

django-rest-framework解析请求参数过程详解

前言 我们在django-rest-framework 自定义swagger 文章中编写了接口, 调通了接口文档. 接口文档可以直接填写参数进行请求, 接下来的问题是如何接受参数, 由...

Python正则表达式完全指南

Python正则表达式完全指南

正则表达式处理文本有如疾风扫秋叶,绝大部分编程语言都内置支持正则表达式,它应用在诸如表单验证、文本提取、替换等场景。爬虫系统更是离不开正则表达式,用好正则表达式往往能收到事半功倍的效果。...

用python代码做configure文件

(在lua中通过loadfile, setfenv实现) python当然也可以: cat config.py bar = 10 foo=100 cat python_as_con...