Caffe均值文件mean.binaryproto转mean.npy的方法

yipeiwu_com6年前Python基础

mean.binaryproto转mean.npy

使用Caffe的C++接口进行操作时,需要的图像均值文件是pb格式,例如常见的均值文件名为mean.binaryproto;但在使用python接口进行操作时,需要的图像均值文件是numpy格式,例如mean.npy。所以在跨语言进行操作时,需要将mean.binaryproto转换成mean.npy,转换代码如下:

import caffe
import numpy as np

MEAN_PROTO_PATH = 'mean.binaryproto'        # 待转换的pb格式图像均值文件路径
MEAN_NPY_PATH = 'mean.npy'             # 转换后的numpy格式图像均值文件路径

blob = caffe.proto.caffe_pb2.BlobProto()      # 创建protobuf blob
data = open(MEAN_PROTO_PATH, 'rb' ).read()     # 读入mean.binaryproto文件内容
blob.ParseFromString(data)             # 解析文件内容到blob

array = np.array(caffe.io.blobproto_to_array(blob))# 将blob中的均值转换成numpy格式,array的shape (mean_number,channel, hight, width)
mean_npy = array[0]                # 一个array中可以有多组均值存在,故需要通过下标选择其中一组均值
np.save(MEAN_NPY_PATH ,mean_npy)

已知图像均值,构造mean.npy

如果已知图像中每个通道的均值,例如3通道图像每个通道的均值分别为104,117,123,我们也可以通过其构造mean.npy。代码如下:

import numpy as np

MEAN_NPY_PATH = 'mean.npy'

mean = np.ones([3,256, 256], dtype=np.float)
mean[0,:,:] = 104
mean[1,:,:] = 117
mean[2,:,:] = 123

np.save(MEAN_NPY, mean)

载入mean.npy

上面我们用两种方式构造了均值文件mean.npy,在使用时载入mean.npy的代码如下:

import numpy as np

mean_npy = np.load(MEAN_NPY_PATH)
mean = mean_npy.mean(1).mean(1)

以上这篇Caffe均值文件mean.binaryproto转mean.npy的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas 对Dataframe结构排序的实现方法

Dataframe结构放在numpy来看应该是二维矩阵的形式,每一列是一个特征,上面会有个列标题,每一行是一个样本。 对Dataframe结构的某一列进行排序方法如下: # 对df表...

Python栈类实例分析

本文实例讲述了python栈类。分享给大家供大家参考。具体如下: class Path: #a list used like a stack def __init__(sel...

python计算二维矩形IOU实例

python计算二维矩形IOU实例

计算交并比:交的面积除以并的面积。 要求矩形框的长和宽应该平行于图片框。不然不能用这样的公式计算。 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离。两条红线之...

采用Psyco实现python执行速度提高到与编译语言一样的水平

本文实例讲述了采用Psyco实现python执行速度提高到与编译语言一样的水平的方法,分享给大家供大家参考。具体实现方法如下: 一、安装Psyco很简单,它有两种安装方式,一种是源码方式...

处理Python中的URLError异常的方法

1.URLError 首先解释下URLError可能产生的原因:     网络无连接,即本机无法上网     连接不...